精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为
 
分析:先设双曲线的右焦点为F',则F'的坐标为(c,0)因为抛物线为y2=4cx,所以F'为抛物线的焦点 O为FF'的中点,E为FP的中点所以OE为△PFF'的中位线,得到PF=2b,再设P(x,y) 过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解答:解:设双曲线的右焦点为F',则F'的坐标为(c,0)
因为抛物线为y2=4cx,
所以F'为抛物线的焦点 O为FF'的中点,
E为FP的中点所以OE为△PFF'的中位线,
那么OE∥PF'
因为OE=a 那么PF'=2a
又PF'⊥PF,FF'=2c 所以PF=2b
设P(x,y) x+c=2a x=2a-c
过点F作x轴的垂线,
点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2
4c(2a-c)+4a2=4(c2-a2
得e=
5
+1
2

故答案为:
5
+1
2
点评:本小题主要考查双曲线的标准方程,以及双曲线的简单性质的应用,等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F引它到渐进线的垂线,垂足为M,延长FM交y轴于E,若
FM
=2
ME
,则该双曲线离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐近线的平行线,该平行线与y轴交于点P,若|OP|=|OF|,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案