精英家教网 > 高中数学 > 题目详情
4.下列四个结论,其中正确的有(  )个.
①已知(1-2x)7=a0+a1x+a2x2+…+a7x7,则a1+a2+a3=-3;
②过原点作曲线y=ex的切线,则切线方程为ex-y=0(其中e为自然对数的底数);
③已知随机变量X~N(3,1),且P(2≤X≤4)=0.6862,则P(X≥4)=0.1587
④已知n为正偶数,用数学归纳法证明等式1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时,若假设n=k(k≥2)时,命题为真,则还需利用归纳假设再证明n=k+1时等式成立,即可证明等式对一切正偶数n都成立.
⑤在回归分析中,常用R2来刻画回归效果,在线性回归模型中,R2表示解释变量对于预报变量变化的贡献率,R2越接近1,表示回归的效果越好.
A.2B.3C.4D.5

分析 利用二项式定理,求出a1+a2+a3的值,可判断①;求出切线方程,可判断②;根据正态分布的对称性,可判断③;根据数学归纳法的步骤,可判断④;根据回归系数的意义,可判断⑤.

解答 解:①已知(1-2x)7=a0+a1x+a2x2+…+a7x7
则a1=${C}_{7}^{1}(-2)^{1}$=-14,a2=${C}_{7}^{2}{(-2)}^{2}$=84,
a3=${C}_{7}^{3}{(-2)}^{3}$=-280,
∴a1+a2+a3=-210,故错误;
②过原点作曲线y=ex的切线,设切点坐标为(a,ea),切线的斜率k=y′|x=a=ea,则切线方程为y-ea=ea(x-a),
将原点坐标代入得:a=1,故切线方程为y-e=e(x-1),即ex-y=0(其中e为自然对数的底数),故正确;
③已知随机变量X~N(3,1),且P(2≤X≤4)=0.6862,则P(X≥4)=$\frac{1-0.6862}{2}$=0.1587,故正确;
④已知n为正偶数,用数学归纳法证明等式1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$)时,
若假设n=k(k≥2)时,命题为真,则还需利用归纳假设再证明n=k+2时等式成立,即可证明等式对一切正偶数n都成立,故错误.
⑤在回归分析中,常用R2来刻画回归效果,在线性回归模型中,R2表示解释变量对于预报变量变化的贡献率,R2越接近1,表示回归的效果越好,故正确;
故正确的命题有3个,
故选:B

点评 本题以命题的真假判断为载体,考查了二项式定理,切线方程,正态分布,数学归纳法,回归分析等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=(ex-a2+(e-x-a)2(a≥0).
(1)将f(x)表示成u=$\frac{{e}^{x}+{e}^{-x}}{2}$的函数;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是R上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[-1,0)时,f(x)=1-($\frac{1}{2}$)x,则f(2016)+f(2017)=(  )
A.-1B.1C.2D.2006

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算lg4+lg25+4${\;}^{-\frac{1}{2}}$-(4-π)0=$\frac{3}{2}$.
若sinθ+cosθ=$\frac{3\sqrt{5}}{5}$,θ∈(0,$\frac{π}{4}$),则cos2θ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.把函数y=sinx-$\sqrt{3}$cosx的图象按向量$\overrightarrow{a}$=(m,0 ) (m>0)平移后,所得到的图象关于y轴对称,则m的最小值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设M={a+b$\sqrt{2}$||a2-2b2|=1,a∈Z,b∈Z},若x∈M,y∈M,求证:
(1)xy∈M;
(2)$\frac{1}{x}$∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{{e}^{x}}$+ax,g(x)=(m-2)x2+(m-1)x+1.(其中e=2.718…)
(1)若f(x)在x=ln2处导数为0,求f(x)在(0,f(0))处的切线方程;
(2)当a=e时,存在x0∈(-1,0)使得f(x0)=g(x0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)当x∈(0,+∞)时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5,求|$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

同步练习册答案