精英家教网 > 高中数学 > 题目详情
函数y=|x+a|的图象关于直线x=2对称,则a=
 
考点:函数的图象
专题:函数的性质及应用
分析:由含绝对值符号函数对称性我们易得函数y=|x+a|的图象关于直线x=-a对称,又由函数y=|x+a|的图象关于直线x=2对称,我们易得a的值.
解答: 解:∵y=|x+a|的图象关于直线x=-a对称,
又∵y=|x+a|的图象关于直线x=2对称,
故a=-2;
故答案:-2
点评:本题考查的知识点是含绝对值符号函数的对称性,熟练掌握是绝对值符号函数的对称性是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3名大学生分配到4个单位实习,每个单位不超过2名学生,则不同的分配方案有(  )
A、10种B、36种
C、48种D、60种

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为
3

(Ⅰ)求ω的值;       
(Ⅱ)求f(x)在区间[-
π
6
π
3
]
上的值域;
(Ⅲ)若函数y=g(x)的图象是由y=f(x)的图象向右平移
π
2
个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的前n项和为Sn(n∈N*),若a3=
3
2
S3=
9
2
,则此数列的首项为(  )
A、6
B、-
1
2
C、
3
2
D、
3
2
或6

查看答案和解析>>

科目:高中数学 来源: 题型:

a为如图所示的程序框图中输出的结果,则a的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

lg
32
+lg
35
+ln1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c.若△ABC的面积S=c2-(a-b)2,则tanC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的各项均为正数,且a10a11+a9a12=486,则log3a1+log3a2+…+log3a20=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1-an=2;数列{bn}满足b1=1,bn+1-bn=2n-1
(Ⅰ)求数列an和bn的通项公式;
(Ⅱ)求数列{nbn}的前n项和Tn

查看答案和解析>>

同步练习册答案