精英家教网 > 高中数学 > 题目详情
函数f(x)=
x
ax+b
(a,b是非零实常数),满足f(2)=1,且方程f(x)=x有且仅有一个解.
(1)求a、b的值;
(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m-x)=4恒成立?为什么?
(3)在直角坐标系中,求定点A(-3,1)到此函数图象上任意一点P的距离|AP|的最小值.
(1)由f(2)=1得2a+b=2,又x=0一定是方程
x
ax+b
=x的解,
所以
1
ax+b
=1无解或有解为0,(3分)
若无解,则ax+b=1无解,得a=0,矛盾,
若有解为0,则b=1,所以a=
1
2
. (6分)
(2)f(x)=
2x
x+2
,设存在常数m,使得对定义域中任意的x,f(x)+f(m-x)=4恒成立,
取x=0,则f(0)+f(m-0)=4,即
2m
m+2
=4,m=-4(必要性)(8分)
又m=-4时,f(x)+f(-4-x)=
2x
x+2
+
2(-4-x)
-4-x+2
=…=4成立(充分性) (10分)
所以存在常数m=-4,使得对定义域中任意的x,f(x)+f(m-x)=4恒成立,(11分)
(3)|AP|2=(x+3)2+(
x-2
x+2
2,设x+2=t,t≠0,(13分)
则|AP|2=(t+1)2+(
t-4
t
2=t2+2t+2-
8
t
+
16
t2
=(t2+
16
t2
)+2(t-
4
t
)+2=(t-
4
t
2+2(t-
4
t
)+10
=( t-
4
t
+1)2+9,(16分)
所以当t-
4
t
+1=0时即t=
-1±
17
2
,也就是x=
-5±
17
2
时,
|AP|min=3 (18分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
ax+b
(a、b为常数且a≠0)满足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表达式;
(2)记xn=f(xn-1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Sn
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b为常数,且a≠0,函数f(x)=
x
ax+b
,且f(3)=1,又方程f(x)=x有唯一解.
(I)求f(x)的解析式及方程f(x)=x的解;
(Ⅱ)当xn=f(xn-1)(n>1),数列{
1
xn
}
是何数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
ax+b
(a,b为常数,a≠0),若f(1)=
1
3
,且f(x)=x只有一个实数根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足关系式:an=f(an-1)(n∈N且n≥2),又a1=-
1
2005
,证明数列{
1
an
}是等差数列并求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)已知函数f(x)=
x
ax+b
(a、b是非零实常数)满足f(1)=
1
2
,且方程f(x)=x有且仅有一个实数解.
(1)求a、b的值;
(2)在直角坐标系中,求定点A(0,2)到函数f(x)图象上任意一点P(x,y)的距离|AP|的最小值.
(3)当x∈(
1
4
1
2
]时,不等式(x+1)•f(x)>m(m-x)-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解答下列问题:
(1)若f(x+1)=2x2+1,求f(x);
(2)若2f(x)-f(-x)=x+1,求f(x);
(3)若函数f(x)=
xax+b
,f(2)=1,且方程f(x)=x有唯一解,求f(x).

查看答案和解析>>

同步练习册答案