精英家教网 > 高中数学 > 题目详情
已知各项不为0的等差数列{an}满足2a2-a72+2a12=0,数列{bn}是等比数列,且b7=a7,则b3b11等于(  )
分析:先利用等差数列的性质以及已知条件求出a7=4,再利用等比数列的性质即可求出结论.
解答:解:因为2a2-a72+2a12=0,且a2+a12=2a7,an≠0,得a7=4.
所以b7=4.
故b3b11=b72=16.
故选  A.
点评:本题考查等差数列与等比数列的基础知识.是对等差中项和等比中项的考查,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an},满足2a3-a12=0,a1=d,数列{bn}是等比数列,且b13=a2,b1=a1则b6b8(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an}满足2a2+2a12=a72,数列{bn}是等比数列,且b7=a7,则b5b9=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an}满足a52-a3-a7=0,则a5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为0的等差数列{an}满足a4-2
a
2
7
+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b12等于(  )
A、1B、2C、4D、8

查看答案和解析>>

同步练习册答案