精英家教网 > 高中数学 > 题目详情

【题目】记实数中的最大数为,最小数为.的三边边长分别为,且,定义的倾斜度为.

1)若为等腰三角形,则_____

2)设,则的取值范围是_____.

【答案】

【解析】

1)分三种三种情况加以讨论,分别求出的值,即可算出总有成立,得到本题答案;

2)根据题意,可得,且,因此对两种情况加以讨论,利用三角形两边之和大于第三边和不等式的性质进行推导,解不等式组可得的取值范围.

1)①若,则

此时,

②若,则

此时,

③若,则

此时,.

综上所述,若为等腰三角形,则

2

.

①当时,,则,由,即

时,

,可得,即,解得.

时,,合乎题意,此时,的取值范围是

②当时,,由,得,即

解得.

时,也成立,此时,的取值范围是.

综上所述,当时,的取值范围是.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;

(II)(0,e],都有f(x)≥g(x)+,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面

(Ⅰ)设分别为的中点,求证:平面

(Ⅱ)求证:平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形的边长为2 分别在三边上, 的中点,

(Ⅰ)当时,求的大小;

(Ⅱ)求的面积的最小值及使得取最小值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的正方形,侧面底面上的点,且平面

(1)求证:平面平面

(2)当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为

1)求轨迹的方程;

2)求定点到轨迹上任意一点的距离的最小值;

3)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是减函数.

(1)试确定a的值;

(2)已知数列,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半正多面体(semiregular solid) 亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

(Ⅰ)求实数的值;

(Ⅱ)当时,讨论函数的单调性;

(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案