【题目】随机将1,2,…,2n(n∈N* , n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1 , 最大数为a2;B组最小数为b1 , 最大数为b2;记ξ=a2﹣a1 , η=b2﹣b1 .
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C, 表示C的对立事件,判断P(C)和P( )的大小关系,并说明理由.
【答案】
(1)解:当n=3时,ξ的取值可能为2,3,4,5
其中P(ξ=2)= = ,
P(ξ=3)= = ,
P(ξ=4)= = ,
P(ξ=5)= = ,
故随机变量ξ的分布列为:
ξ | 2 | 3 | 4 | 5 |
P |
ξ的数学期望E(ξ)=2× +3× +4× +5× =
(2)解:∵C表示事件“ξ与η的取值恰好相等”,
∴P(C)=2×
(3)解:当n=2时,P(C)=2× = ,此时P( )< ;
P( )<P(C);
当n≥3时,P(C)=2× < ,此时P( )> ;
即P( )>P(C)
【解析】(1)当n=3时,ξ的取值可能为2,3,4,5,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.(2)根据C表示事件“ξ与η的取值恰好相等”,利用分类加法原理,可得事件C发生的概率P(C)的表达式;(3)判断P(C)和P( )的大小关系,即判断P(C)和 的大小关系,根据(2)的公式,可得答案.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)= 关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24 届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
(1)根据上表说明,能否有的把握认为,收看开幕式与性别有关?
(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3 人中女生人数为,写出的分布列,并求.
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.
(1)求M;
(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A. “若x>1,则2x>1”的否命题为真命题
B. “若cosβ=1,则sinβ=0”的逆命题是真命题
C. “若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题
D. 命题“若x>1,则x>a”的逆命题为真命题,则a>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2+bx+b) (b∈R)
(1)当b=4时,求f(x)的极值;
(2)若f(x)在区间(0, )上单调递增,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com