精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函数y=f(x)图象的一个对称中心到它对称轴的最近距离为
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

【答案】
(1)解:函数f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),

化简可得:f(x)= sinωxcosωx﹣ cos2ωx+ cos2ωx﹣ (ω>0,x∈R),

= sin2ωx+ cos2ωx﹣ = sin2ωx+ cos2ωx= sin(2ωx

∵函数y=f(x)图象的一个对称中心到它对称轴的最近距离为

∴T=4× =π,

故得ω=1.

∴f(x)= sin(2x ),

对称轴方程:2x =

得:x= ,k∈Z.

∴f(x)的对称轴方程为:x= ,k∈Z.


(2)解:∵f(A)=0,即sin(2A )=0,

∴2A =kπ,

∵0<A<π,

∴A=

∵sinB= ,a=

由正弦定理, ,可得: ,解得:b=

故得b的值为:


【解析】(1)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,对称中心到它对称轴的最近距离为 ,可得周期T,从而求出ω.结合三角函数的图象和性质,可得f(x)的对称轴方程;(2)根据f(A)=0,求解出A角的大小,sinB= ,a= ,根据正弦定理可得b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设A、B分别为双曲线 的左右顶点,双曲线的实轴长为4 ,焦点到渐近线的距离为
(1)求双曲线的方程;
(2)已知直线 与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使 ,求t的值及点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正项等差数列{an}中a1和a4是方程x2﹣10x+16=0的两个根,若数列{log2an}的前5项和为S5且S5∈[n,n+1],n∈Z,则n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=log2(ax2﹣2x+2)的定义域为Q.
(1)若a>0且[2,3]∩Q=,求实数a的取值范围;
(2)若[2,3]Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查某车间20名工人的年龄,第i名工人的年龄为ai,具体数据见表:

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ai

29

28

30

19

31

28

30

28

32

31

30

31

29

29

31

32

40

30

32

30


(1)作出这20名工人年龄的茎叶图;
(2)求这20名工人年龄的众数和极差;
(3)执行如图所示的算法流程图(其中 是这20名工人年龄的平均数),求输出的S值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点D为△ABC的边BC上一点, =3 ,En(n∈N+)为边AC上的点,满足 = an+1 =(4an+3) ,其中实数列{an}中an>0,a1=1,则{an}的通项公式为(
A.32n1﹣2
B.2n﹣1
C.4n﹣2
D.24n1﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,(an﹣3)an+1﹣an+4=0(n∈N*).
(1)求a2 , a3 , a4
(2)猜想{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站对“爱飞客”飞行大会的日关注量x(万人)与日点赞量y(万次)进行了统计对比,得到表格如下:

x

3

5

6

7

9

y

2

3

3

4

5

由散点图象知,可以用回归直线方程 来近似刻画它们之间的关系.
(Ⅰ)求出y关于x的回归直线方程,并预测日关注量为10万人时的日点赞量;
(Ⅱ)一个三口之家参加“爱飞客”亲子游戏,游戏规定:三人依次从装有3个白球和2个红球的箱子中不放回地各摸出一个球,大人摸出每个红球得奖金10元,小孩摸出1个红球得奖金50元.求该三口之家所得奖金总额不低于50元的概率.
参考公式:b= 参考数据: =200, =112.

查看答案和解析>>

同步练习册答案