精英家教网 > 高中数学 > 题目详情

【题目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.

(1)已知a=3,求(RP)∩Q

(2)若PQQ,求实数a的取值范围.

【答案】(1) (RP)∩Q={x|-2≤x<4}.(2) (-∞,2].

【解析】试题分析:(1)先求集合Q以及RP,再求(RP)∩Q;(2)由PQQ,得PQ.再根据P为空集与非空分类讨论,结合数轴求实数a的取值范围.

试题解析:解:(1)因为a=3,所以集合P={x|4≤x≤7}.

所以RP={x|x<4或x>7},

Q={x|1≤2x+5≤15}={x|-2≤x≤5},

所以(RP)∩Q={x|-2≤x<4}.

(2)因为PQQ,所以PQ.

①当a+1>2a+1,即a<0时,P

所以PQ

②当a≥0时,因为PQ

所以所以0≤a≤2.

综上所述实数a的取值范围为(-∞2]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我们可以用随机模拟的方法估计的值,如图程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生内的任何一个实数).若输出的结果为,则由此可估计的近似值为( )

A. 3.119 B. 3.124 C. 3.132 D. 3.151

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)求函数的单调区间;

II)若上恒成立,求实数的取值范围;

III)在(II)的条件下,对任意的,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,点为抛物线上的动点,为坐标原点,线段的中点的轨迹为曲线.

(1)求抛物线的方程;

(2)点是曲线上的点,过点作圆的两条切线,分别与轴交于两点.

面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:

身高达标

身高不达标

总计

经常参加体育锻炼

40

不经常参加体育锻炼

15

总计

100

(1)完成上表;

(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.

(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;

(Ⅱ)小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

交费金额

76元

63元

45.6元

184.6元

问小明家第一季度共用电多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若恒成立,求实数的取值范围;

(2)是否存在整数,使得函数在区间上存在极小值,若存在,求出所有整数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令,其中是函数的导函数.

(Ⅰ)时,求的极值;

(Ⅱ)时,若存在,使得恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程x2-2mx+4m2-6=0的两不等根为α,β,试求(α-1)2+(β-1)2的最值.

查看答案和解析>>

同步练习册答案