精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-x+1(a>0)在(0,+∞)上只有一个零点,而函数g(x)=ax2+(b-2)x+b是偶函数,且函数f(x)在[a,2b]上的最大值为
1
1
分析:先根据函数的零点的意义求出a,再根据函数的奇偶性求出b,最后根据二次函数性质求出最值即可.
解答:解:∵函数f(x)=ax2-x+1(a>0)在(0,+∞)上只有一个零点
∴△=1-4a=0即a=
1
4

∵函数g(x)=ax2+(b-2)x+b是偶函数,
∴b=2
∴f(x)=
1
4
x2-x+1
而函数f(x)是开口向上的二次函数,对称轴为x=2
则在[
1
4
,4]当x=4时取最大值1
故答案为:1.
点评:本题主要考查了函数的最值及其几何意义、同时考查了函数的零点,分析问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案