精英家教网 > 高中数学 > 题目详情

设函数.
(1)若时,求处的切线方程;
(2)当时,,求的取值范围.

(1);(2)的取值范围是.

解析试题分析:本题考查函数与导数及运用导数求单调区间、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,将代入得到解析式,对求导,将代入得到切线的斜率,再将代入中得到切点的纵坐标,最后利用点斜式方程直接写出切线方程;第二问,将恒成立问题转化成函数的最小值问题,对求导,判断范围内的函数的单调性,判断出当时,,所以.
试题解析:(1)当

故所求切线方程为:
化简得:.(5分)
(2)
化简得:

求导得:.
时,;当时,.
单调减少,在单调增加.
时取极小值.
时,.
综上所述:,即的取值范围是.(13分)
考点:1.利用导数求切线方程;2.利用导数判断函数的单调性;3.利用导数求函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数在[1,2]上是减函数,求实数的取值范围;
(3)令,是否存在实数,当 (是自然对数的底数)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数>0)
(1)若的一个极值点,求的值;
(2)上是增函数,求a的取值范围
(3)若对任意的总存在成立,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求f(x)的单调区间及极值;
(II)若关于x的不等式恒成立,求实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)当时,求曲线在点处的切线方程;
(2)若处有极值,求的单调递增区间;
(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若对一切x∈R,≥1恒成立,求a的取值集合;
(2)在函数的图像上取定两点,记直线AB的斜率   为k,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)。
(1)若,求证:上是增函数;
(2)求上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)若函数单调递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围。

查看答案和解析>>

同步练习册答案