分析 (1)由已知可得:b1=1,bn+1=$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$.作差bn+1-bn=1=常数,即可证明.
(2)bn=1+n-1=n,Sn=$\frac{n(n+1)}{2}$,$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),即可得出.
解答 (1)证明:数列{an}中,a1=2,an+1=2-$\frac{1}{{a}_{n}}$,数列{bn}中,bn=$\frac{1}{{a}_{n}-1}$,其中n∈N*.
∴b1=1,∵bn+1=$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$.
∴bn+1-bn═$\frac{{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=1=常数,
∴数列{bn}是等差数列,首项为1,等差为1.
(2)解:bn=1+n-1=n,
Sn=(1+2+3+4+…n)=$\frac{n(n+1)}{2}$,∴$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),
∴$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$=$2[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.
点评 本题考查了“裂项求和方法”、等差数列的定义通项公式及其求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若x≠2,则x2-3x+2≠0 | B. | 若x2-3x+2=0,则x=2 | ||
C. | 若x2-3x+2≠0,则x≠2 | D. | 若x=2,则x2-3x+2≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 6 | C. | 5 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com