精英家教网 > 高中数学 > 题目详情
4.已知数列{an}中,a1=2,${a_{n+1}}=2-\frac{1}{a_n}$,数列{bn}中,${b_n}=\frac{1}{{{a_n}-1}}$,其中n∈N*
(1)求证:数列{bn}是等差数列;
(2)若Sn是数列{bn}的前n项和,求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$的值.

分析 (1)由已知可得:b1=1,bn+1=$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$.作差bn+1-bn=1=常数,即可证明.
(2)bn=1+n-1=n,Sn=$\frac{n(n+1)}{2}$,$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),即可得出.

解答 (1)证明:数列{an}中,a1=2,an+1=2-$\frac{1}{{a}_{n}}$,数列{bn}中,bn=$\frac{1}{{a}_{n}-1}$,其中n∈N*
∴b1=1,∵bn+1=$\frac{1}{{a}_{n+1}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$.
∴bn+1-bn═$\frac{{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=1=常数,
∴数列{bn}是等差数列,首项为1,等差为1.
(2)解:bn=1+n-1=n,
Sn=(1+2+3+4+…n)=$\frac{n(n+1)}{2}$,∴$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$),
∴$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$=$2[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$=$\frac{2n}{n+1}$.

点评 本题考查了“裂项求和方法”、等差数列的定义通项公式及其求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.极坐标系中,已知圆ρ=10cos$({\frac{π}{3}-θ})$
(1)求圆的直角坐标方程.
(2)设P是圆上任一点,求点P到直线$\sqrt{3}x-y+2=0$距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:$\frac{1}{x-3}<0$,命题q:x2-4x-5<0.若“p且q”为假,“p或q”为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“若x=2,则x2-3x+2=0”的否命题是(  )
A.若x≠2,则x2-3x+2≠0B.若x2-3x+2=0,则x=2
C.若x2-3x+2≠0,则x≠2D.若x=2,则x2-3x+2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设n为正整数,(x-$\frac{1}{x\sqrt{x}}$)n展开式中存在常数项,则n的一个可能取值为(  )
A.8B.6C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a=(1,1,0)$,$\overrightarrow b=(-1,0,2)$,且$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a$互相垂直,则k=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列4个命题中,正确的是(2)(3)(写出所有正确的题号).
(1)命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
(2)“x=-1”是“x2-5x-6=0”的充分不必要条件
(3)命题“若sinx≠siny,则x≠y”是真命题
(4)若命题$p:?{x_o}∈R,x_0^2-2{x_0}-1>0$,则¬p:?x∈R,x2-2x-1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知递增的等差数列{an}(n∈N*)的首项a1=1,且a1,a2,a4成等比数列,则a4+a8+a12+…+a4n+4=2n2+6n+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={a|一次函数y=(4a-1)x+b在R上是增函数},集合B=$\left.{\left\{{a|log_a^{\;}\frac{3}{4}<1}\right.}\right\}$.
(1)求集合A,B;
(2)设集合$C=(0,\frac{3}{4})$,求函数f(x)=x-$\frac{1}{x}$在A∩C上的值域.

查看答案和解析>>

同步练习册答案