精英家教网 > 高中数学 > 题目详情
9.已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=n,求数列{bn}的前n项和Tn

分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)∵S1+a1,S3+a3,S2+a2成等差数列,
∴2(S3+a3)=S2+a2+S1+a1
∴$2{a}_{1}(1+q+2{q}^{2})$=3a1+2a1q,
化为4q2=1,公比q>0,
∴q=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n-1}$.
(2)∵anbn=n,
∴bn=n•2n-1
∴数列{bn}的前n项和Tn=1+2×2+3×22+…+n•2n-1
2Tn=2+2×22+3×23+…+(n-1)•2n-1+n•2n
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{1-{2}^{n}}{1-2}$-n•2n=(1-n)•2n-1,
∴Tn=(n-1)•2n+1.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)在极坐标系Ox中,设集合A={(ρ,θ)|0≤θ≤$\frac{π}{4}$,0≤ρ≤cosθ},求集合A所表示的区域的面积;
(2)在直角坐标系xOy中,直线l1$\left\{\begin{array}{l}{x=-4+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t为参数),曲线C1$\left\{\begin{array}{l}{x=acosθ}\\{y=2sinθ}\end{array}\right.$(θ表示参数),其中a>0,若曲线C上所有点均在直线l的右下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.与圆C1:x2+y2-2x-2y+1=0和直线l:y+1=0都相切的圆的圆心轨迹方程是$(x-1)^{2}=6(y+\frac{1}{2})$和$(x-1)^{2}=2(y-\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-x2+mx+1,(x∈R)
①求f(x)在[-1,1]上的最小值.
②对于函数y=g(x)在定义域内给定区间[a,b],如果存在x0(a<x0<b)满足$g({x_0})=\frac{g(b)-g(a)}{b-a}$,则称函数g(x)是区间[a,b]上的“平均值函数”,x0是它的一个“均值点”.如函数y=x2是[-1,1]上的平均值函数,0就是它的均值点.若函数f(x)是区间[-1,1]上的平均值函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7≠0,则b2b12=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆柱的底面半径为4,与圆柱底面成60°角的平面截这个圆柱得到一个椭圆,则这个椭圆的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{{{x^2}+1}}{2x+m}$是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(-∞,-1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)为定义在R上的奇函数,且在(0,+∞)上是增函数,f(2)=0,则x[f(x)-f(-x)]<0的解集为(-2,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]是增函数,设a=f(log47),b=f(log${\;}_{\frac{1}{2}}$3),c=f(0.20.6),则a,b,c的大小关系是b<a<c.

查看答案和解析>>

同步练习册答案