精英家教网 > 高中数学 > 题目详情
11.如图,直线PA与圆相切于点A,过P作直线与圆交于C、D两点,点B在圆上,且∠PAC=∠BCD.
(1)证明:AB∥CD;
(2)若PC=2AC,求$\frac{AP}{BC}$.

分析 (1)证明∠ABC=∠BCD,即可证明AB∥CD;
(2)若PC=2AC,证明△PAC∽△CBA,即可求$\frac{AP}{BC}$.

解答 (1)证明:∵直线PA与圆相切于点A,过P作直线与圆交于C、D两点,
∴∠PAC=∠ABC------------(2分)
∵∠PAC=∠BCD
∴∠ABC=∠BCD-----------(3分)
∴AB∥CD---------------(5分)
(2)解:由(1)得AB∥CD,∠PAC=∠ABC
∴∠BAC=∠ACP-------------(7分)
∴△PAC∽△CBA-------------(9分)
∴$\frac{AP}{BC}$=$\frac{PC}{CA}$=2------------------(10分)

点评 本题考查圆的切线的性质,考查三角形相似的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两坐标系中取相同的长度.已知曲线C1的极坐标方程为ρ=2cosθ,将曲线C1向左平移一个单位,再将其横坐标伸长到原来的2倍得到曲线C2
(1)求曲线C2的直角坐标方程;
(2)过点P(1,2)的直线与曲线C2交于A、B两点,求|PA||PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列两个函数表示相等函数的是(  )
A.f(x)=lgx2,g(x)=2lgxB.f(x)=1,g(x)=x0
C.$f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$D.$f(x)=x,g(x)={log_a}{a^x}(a>0且a≠1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过1500元的部分3
超过1500元至4500元的部分10
超过4500元至9000元的部分20
凯里市某市民10月份应交纳税额为256元,那么他当月的工资、薪金所得是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{{\sqrt{2}}}{2}$.求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在下列给出的命题中,所有正确命题的序号为①③⑤.
①若A,B为互斥事件,则P(A)+P(B)≤1;②若b2=ac,则a,b,c成等比数列;
③经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
④若函数f(x)对一切x∈R满足:|f(x)=|f(-x)||,则函数f(x)为奇函数或偶函数;
⑤若函数f(x)=|log2x|-($\frac{1}{2}$)x有两个不同的零点x1,x2,则x1•x2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0成立,那么a的取值范围是(  )
A.(1,+∞)B.[4,8)C.(4,8)D.(1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在二项式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展开式中,只有第5项的二项式系数最大,则n=8;展开式中的第4项为-7${x}^{\frac{10}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数x,y满足的不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$所表示的平面区域面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

同步练习册答案