分析 (1)证明∠ABC=∠BCD,即可证明AB∥CD;
(2)若PC=2AC,证明△PAC∽△CBA,即可求$\frac{AP}{BC}$.
解答 (1)证明:∵直线PA与圆相切于点A,过P作直线与圆交于C、D两点,
∴∠PAC=∠ABC------------(2分)
∵∠PAC=∠BCD
∴∠ABC=∠BCD-----------(3分)
∴AB∥CD---------------(5分)
(2)解:由(1)得AB∥CD,∠PAC=∠ABC
∴∠BAC=∠ACP-------------(7分)
∴△PAC∽△CBA-------------(9分)
∴$\frac{AP}{BC}$=$\frac{PC}{CA}$=2------------------(10分)
点评 本题考查圆的切线的性质,考查三角形相似的判定,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=lgx2,g(x)=2lgx | B. | f(x)=1,g(x)=x0 | ||
C. | $f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$ | D. | $f(x)=x,g(x)={log_a}{a^x}(a>0且a≠1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
全月应纳税所得额 | 税率(%) |
不超过1500元的部分 | 3 |
超过1500元至4500元的部分 | 10 |
超过4500元至9000元的部分 | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,+∞) | B. | [4,8) | C. | (4,8) | D. | (1,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com