精英家教网 > 高中数学 > 题目详情
2.若△ABC的内角A,B,C所对的边分别为a,b,c,且满足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)当a=$\sqrt{7}$,b=2时,求△ABC的面积.

分析 (1)由正弦定理化简已知可得$sinAsinB-\sqrt{3}sinBcosA=0$,又sinB≠0,从而可求tanA,由于0<A<π,即可解得A的值.
(2)由余弦定理解得c2-2c-3=0,结合c>0,即可求c,利用三角形面积公式即可得解.

解答 解:(1)因为$asinB-\sqrt{3}bcosA=0$,由正弦定理,得$sinAsinB-\sqrt{3}sinBcosA=0$,
又sinB≠0,从而$tanA=\sqrt{3}$,由于0<A<π,所以$A=\frac{π}{3}$.
(2)由余弦定理,得a2=b2+c2-2bccosA,而$a=\sqrt{7},b=2$,$A=\frac{π}{3}$,
得7=4+c2-2c,即c2-2c-3=0因为c>0,所以c=3,
故△ABC面积为$\frac{1}{2}bcsinA=\frac{{3\sqrt{3}}}{2}$.

点评 本题主要考查了三角形面积公式,正弦定理,余弦定理,三角函数恒等变换的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知F1,F2分别是椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{m}$=1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1⊥PF2
(Ⅰ)求m的值;
(Ⅱ)求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,这是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,且AC⊥BC,P为$\widehat{{A}_{1}{B}_{1}}$上的动点.
(1)证明:PA1⊥平面PBB1
(2)设半圆柱和多面体ABB1A1C的体积分别为V1,V2,且AC=BC,求V1:V2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE且BC=2,则正三棱锥A-BCD的体积是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1中,AC⊥BC,侧棱C1C⊥平面ABC,AC=BC=CC1=2,B1C与BC1相交于点O,连结AB1,AC1
(1)求证:平面ABC1⊥平面B1AC.
(2)求四面体B1-ABC1的体积;
(3)求二面角B1-AB-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图在三棱锥S-ABC中,SC⊥面ABC,AC⊥BC,且SC=AC=BC,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设偶函数f(x)对任意x∈R都有f(x)=-$\frac{1}{f(x-3)}$,且当x∈[-3,-2]时,f(x)=4x,则f(119.5)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=-x3-x+sinx,不等式f(m+sinθ)+f(cos2θ)>0对任意θ∈(0,$\frac{π}{2}$)都成立,则实数m的取值范围(-∞,-$\frac{25}{12}$).

查看答案和解析>>

同步练习册答案