精英家教网 > 高中数学 > 题目详情

已知函数数学公式数学公式
(Ⅰ)当t=8时,求函数y=f(x)-g(x)的单调区间;
(Ⅱ)求证:当t>0时,f(x)≥g(x)对任意正实数x都成立.

解:(Ⅰ)当t=8时,y′=x2-4
令y′>0,得x<-2或x>2,令y′<0,得-2<x<2
故所求函数y=f(x)-g(x)的单调递增区间是(-∞,-2)和(2,+∞),
单调递减区间是(-2,2)
(Ⅱ)证明:令
因为t>0,由,得
时,h′(x)>0;当时,h′(x)<0
当变化时,y与y′的变化情况如下表:
x
h′(x)-0+
h(x)极小值
∴h(x)在(0,+∞)内有唯一的极小值
∴h(x)在(0,+∞)上的最小值
故当t>0时,f(x)≥g(x)对任意正实数x都成立
分析:(I)先对函数y=f(x)-g(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据g′(x)>0求得的区间是单调增区间,g′(x)<0求得的区间是单调减区间,即可得到答案.
(II)令.利用导数求出fh(x)最小值,从而证得当t>0时,f(x)≥g(x)对任意正实数x都成立.
点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、导数在最大值、最小值问题中的应用、导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=-x2+2x+3,当x∈
(-1,3)
(-1,3)
时,函数值大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-4x+6,当x∈[1,4]时,则函数的最大值为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)求证:f(x)是奇函数
(2)试判断f(x)的单调性,并求f(x)在[-3,3]上的最值
(3)解不等式:f(x2-x)-f(x)≥-6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),当自变量由x0变化到x1时函数值的增量与相应的自变量的增量比是函数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知函数y=sin(2x+
π
4
)
,当它的函数值大于零时,该函数的单调递增区间是(  )

查看答案和解析>>

同步练习册答案