精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cosα
y=sinα
(α为参数),则曲线C上的一个动点Q到直线l的距离的最小值为
 
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:把椭圆的参数方程右边的系数都化为1,然后直接平方作和得到椭圆的方程,设出与已知直线平行的直线方程,和椭圆联立后由判别式等于0解出该直线方程,然后由两平行线间的距离公式求出曲线上的动点到直线x-y+4=0的距离.
解答: 解:由曲线C的参数方程为
x=
3
cosα
y=sinα
(α为参数),得
x2
3
+y2=1

设与直线L平行的直线为x-y+m=0,与
x2
3
+y2=1
联立得4x2+6mx+3m2-3=0,
由△=36m2-16(3m2-3)=-12m2+48=0,得m=±2.
所以当m=2时,即直线x-y+2=0与椭圆相切时,椭圆上的动点为切点时到直线x-y+4=0的距离最小,
最小距离为d=
|4-2|
2
=
2

故答案为:
2
点评:本题考查了椭圆的参数方程,考查了直线与圆锥曲线的关系,考查了数学转化思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}满足a2+a6=40,a5-2a3=16.
(1)求数列{an}的通项公式;
(2)若{an}的前n项和为Sn,令f(n)=
Snan
8n
(n∈N*),求f(n)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1、F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R)
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的动点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.
下列说法正确的有:
 
.(写出所有正确说法的序号)
①对给定的函数f(x),其承托函数可能不存在,也可能有无数个;
②g(x)=ex为函数f(x)=ex的一个承托函数;
③函数f(x)=
x
x2+x+1
不存在承托函数;
④函数f(x)=-
1
5x2-4x+11
,若函数g(x)的图象恰为f(x)在点P(1,-
1
12
)处的切线,则g(x)为函数f(x)的一个承托函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程是
x=cosθ
y=sinθ
(θ为参数),以直角坐标系xoy的原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=4,则求曲线C上任意点M到直线l的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=1,AC=2,BC=
5
,AA1=
11
,则球O的表面积为:(  )
A、
33
2
π
B、18π
C、32π
D、16π

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰为2的等腰三角形,那么原平面图形的面积是(  )
A、2
B、2
2
C、4
2
D、8
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,4π)内,与角-
5
终边相同的角的集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面之间坐标系中,已知A(-1,1),B(2,4),圆C:x2-2ax+y2-4y+a2+
51
25
=0
(1)若圆C过点A,求a的值;
(2)若圆C与直线AB相交于P,Q两点,且CP⊥CQ,求a的值;
(3)若圆C与线段AB有公共点,求a的最小值.

查看答案和解析>>

同步练习册答案