精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知在极坐标系中,点是线段的中点,以极点为原点,极轴为轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线的参数方程是为参数).

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线过点交曲线两点,求的值.

【答案】(Ⅰ),. (Ⅱ)12.

【解析】试题分析:(1)根据将极坐标化为直角坐标,利用三角函数平方关系消参数得普通方程,(2)先设直线参数方程,再代人圆方程,利用参数几何意义求的值.

试题解析:((Ⅰ)将点的极坐标化为直角坐标,得.

所以点的直角坐标为.

消去参数,得,即为曲线的普通方程.

Ⅱ)解法一:直线的参数方程为为参数,为直线的倾斜角)

代入,整理得:.

设点对应的参数值分别为.

.

解法二:过点作圆的切线,切点为

连接,因为点由平面几何知识得:

所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数同时满足:⑴对于定义域上的任意,恒有 ⑵对于定义域上的任意,当时,恒有,则称函数理想函数”.给出下列四个函数中: ,② ,④,能被称为理想函数的有_____________(填相应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥中,底面是梯形,ABCDAB=PD=4,CD=2,MCD的中点,NPB上一点,且.

(1)若MN∥平面PAD

(2)若直线AN与平面PBC所成角的正弦值为,求异面直线AD与直线CN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市摄影协会准备在201910月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:

1)求频率分布直方图中的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);

2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.

①在答题卡上的统计表中填出每组相应抽取的人数:

年龄

人数

②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了参加某数学竞赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下.

理科:79,81,81,79,94,92,85,89

文科:94,80,90,81,73,84,90,80

画出理科、文科两组同学成绩的茎叶图;

(2)计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥比较好;

(3)若在成绩不低于90分的同学中随机抽出3人进行培训,求抽出的3人中既有理科组同学又有文科组同学的概率.

(参考公式:样本数据x1,x2,…,xn的方差:

s2= [(x1-)2+(x2-)2+…+(xn-)2],其中为样本平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形

为矩形,平面平面.

I)求证:平面

II)点在线段上运动,设平面与平面所成二面角的平面角为

试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.

Ⅰ)求椭圆的方程;

Ⅱ)过的直线交椭圆于两点,试问:是否存在一个定点,使得以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?

(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案