精英家教网 > 高中数学 > 题目详情
如图所示,过定点A(a,b)任作互相垂直的两直线l1与l2,且l1与x轴交于M点,l2与y轴交于N点,求线段MN中点P的轨迹方程.

解析:设P(x,y),M(x1,0),N(0,y1),

∵l1⊥l2

∴(x1-a)2+b2+(y1-b)2+a2=x12+y12,化简得ax1+by1-a2-b2=0,

∴所求点P的轨迹方程为2ax+2by-a2-b2=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知直线l的斜率为k且过点Q(-3,0),抛物线C:y2=16x,直线与抛物线l有两个不同的交点,F是抛物线的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点.
(1)求|PA|+|PF|的最小值;
(2)求k的取值范围;
(3)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)的四个顶点构成边长为5的菱形,原点O到直线AB的距离为
12
5
,其A(0,a),B(-b,0).直线l:x=my+n与椭圆M相交于C,D两点,且以CD为直径的圆过椭圆的右顶点P(其中点C,D与点P不重合).
(1)求椭圆M的方程;
(2)试判断直线l与x轴是否交于定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

如图所示,设C(a,b)是定点(ab≠0),过C作两条互相垂直的直线l1l2,且l1l2分别交x,y轴于A,B,求:

(1)线段AB中点M的轨迹方程;

(2)|MC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:044

如图所示,过定点A(m0)(m0)作直线交y轴于Q点,过QQPAQx轴于P点,在PQ的延长线上取点M,使|MQ|=|PQ|.当直线AQ变动时,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案