精英家教网 > 高中数学 > 题目详情
8.以下命题正确的个数是(  )
①命题“?x∈R,sinx>0”的否定是“?x∈R,sinx≤0”.
②命题“若x2+x-12=0,则x=4”的逆否命题为“若x≠4,则x2+x-12≠0”.
③若p∧q为假命题,则p、q均为假命题.
A.0个B.1个C.2个D.3个

分析 对3个命题分别进行判断,即可得出结论.

解答 解:①命题“?x∈R,sinx>0”的否定是“?x∈R,sinx≤0”,正确.
②命题“若x2+x-12=0,则x=4”的逆否命题为“若x≠4,则x2+x-12≠0”,正确.
③若p∧q为假命题,则p或q为假命题,不正确.
故选:C.

点评 本题考查命题的真假判断,考查命题的否定,逆否命题,复合命题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\sqrt{3}$sinωx+cosωx-1(ω>0),且满足相邻两个最大值间的距离为π;
(1)求ω
(2)若y=f(x)的图象向右平移a(a>0)个单位,图象再向上移动一个单位得到y=g(x)的图象,且y=g(x)为奇函数,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)证明:当x>1时,f(x)<x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$(a∈R).
(1)若a=1,求函数f(x)在(2,f(2))处的切线方程;
(2)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(3)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程x3-3x+c=0恰有两个实数根,则c=(  )
A.-2或2B.-9或3C.-1或1D.-3或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{\sqrt{a{x}^{2}-4ax+3}}$的值域为(0,+∞)则a的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[0,$\frac{3}{4}$)C.[$\frac{3}{4}$,+∞)D.[$\frac{3}{4}$,+∞)∪(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简计算
$(1){\;}_{\;}4{a^{\frac{2}{3}}}{b^{-\frac{1}{3}}}÷(-\frac{2}{3}{a^{-\frac{1}{3}}}{b^{-\frac{1}{3}}})$
$(2){\;}_{\;}{(\frac{2}{3})^{-2}}+{(1-\sqrt{2})^0}-{(3\frac{3}{8})^{\frac{2}{3}}}+\sqrt{{{(3-π)}^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面给出四个论断:①{0}是空集;②若a∈N,则-a∉N;③集合A={x∈R|x2-2x+1=0}有两个元素;④集合$B=\{x∈Q|\frac{6}{x}∈N\}$是有限集.其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:
机床甲109.81010.2
机床乙10.1109.910
如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求?

查看答案和解析>>

同步练习册答案