精英家教网 > 高中数学 > 题目详情
14.如图,点列{An},{Bn}分别在某个锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+2,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*(P≠Q表示P与Q不重合).若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )
A.{dn}是等差数列B.{dn2}是等差数列C.{Sn}是等差数列D.{Sn2}是等差数列

分析 设锐角的顶点为O,再设|OA1|=a,|OB1|=c,|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,由于a,c不确定,判断C,D不正确,设△AnBnBn+1的底边BnBn+1上的高为hn,运用三角形相似知识,hn+hn+2=2hn+1,由Sn=$\frac{1}{2}$d•hn,可得Sn+Sn+2=2Sn+1,进而得到数列{Sn}为等差数列.

解答 解:设锐角的顶点为O,|OA1|=a,|OB1|=c,
|AnAn+1|=|An+1An+2|=b,
|BnBn+1|=|Bn+1Bn+2|=d,
由于a,c不确定,
则{dn}不一定是等差数列,
{dn2}不一定是等差数列,
设△AnBnBn+1的底边BnBn+1上的高为hn
由三角形的相似可得
$\frac{{h}_{n}}{{h}_{n+1}}$=$\frac{O{A}_{n}}{O{A}_{n+1}}$=$\frac{a+(n-1)b}{a+nb}$,$\frac{{h}_{n+2}}{{h}_{n+1}}$=$\frac{O{A}_{n+2}}{O{A}_{n+1}}$=$\frac{a+(n+1)b}{a+nb}$,
两式相加可得,$\frac{{h}_{n}+{h}_{n+2}}{{h}_{n+1}}$=$\frac{2a+2nb}{a+nb}$=2,
即有hn+hn+2=2hn+1
由Sn=$\frac{1}{2}$d•hn,可得Sn+Sn+2=2Sn+1
即为Sn+2-Sn+1=Sn+1-Sn
则数列{Sn}为等差数列.
故选:C.

点评 本题考查等差数列的判断,注意运用三角形的相似和等差数列的性质,考查化简整理的推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),点F1,F2分别为左、右焦点,若双曲线右支上存在点P满足$\frac{|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{2}}|}$=e(e为双曲线的离心率),则e的最大值为(  )
A.4$\sqrt{2}$B.3+$\sqrt{5}$C.$\sqrt{2}$+1D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数f′(x),对?x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>ex的解是(  )
A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若集合A={x|-1≤2x+1≤3},B=$\{x|\frac{x-2}{x}≤0\}$,则A∪B={x|-1≤x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是(  )
A.等腰直角三角形B.等边三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≤0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,则z=3x+y的取值范围是[1,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2lnx-x2+ax,a∈R.
(1)若函数f(x)-ax+m=0在[$\frac{1}{e}$,e]上有两个不等的实数根,求实数m的取值范围;
(2)若函数f(x)的图象与x轴交于不同的点A(x1,0),B(x2,0),且0<x1<x2,求证:f′(px1+qx2)<0 (实数p,q满足0<p≤q,p+q=1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P(2,5)到直线y=-3x的距离d等于(  )
A.0B.$\frac{11}{10}\sqrt{10}$C.$\sqrt{3}$+52D.$\sqrt{3}$-52

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1,F1,F2分别是椭圆C的左、右焦点.
(Ⅰ)求椭圆C的长轴和短轴的长,离心率e,左焦点F1
(Ⅱ)已知P是椭圆上一点,且PF1⊥PF2,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案