精英家教网 > 高中数学 > 题目详情
已知函数f(x)为R上的减函数,且值域为R,点A(-1,2)和点B(1,1)在f(x)的图象上,f-1(x)是它的反函数,则不等式|f-1(log2x)|<1的解集为
(2,4)
(2,4)
分析:根据题意可知f(-1)=2,f(1)=1则f-1(2)=-1,f-1(1)=1,然后化简不等式得f-1(2)=-1<f-1(log2x)<1=f-1(1),最后根据反函数的单调性建立关系式,解之即可求出x的范围.
解答:解:∵连续函数f(x)是R上的增函数,且点A(1,2)、B(1,1)在它的图象上
∴f(-1)=2,f(1)=1
则f-1(2)=-1,f-1(1)=1
∵|f-1(log2x)|<1
∴f-1(2)=-1<f-1(log2x)<1=f-1(1)
而y=f-1(x)在R上单调递减
∴1<log2x<2即2<x<4
故答案为:(2,4).
点评:本题主要考查了反函数,以及绝对值不等式的解法,同时考查了抽象函数的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)为R上的连续函数且存在反函数f-1(x),若函数f(x)满足下表:
精英家教网
那么,不等式|f-1(x-1)|<2的解集是(  )
A、{x|
5
2
<x<4}
B、{x|
3
2
<x<3}
C、{x|1<x<2}
D、{x|1<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)为R上的奇函数,且在(0,+∞)上为增函数,
(1)求证:函数f (x)在(-∞,0)上也是增函数;
(2)如果f (
12
)=1,解不等式-1<f (2x+1)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的减函数,则满足f(|x|)<f(1)的实数x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的减函数,则满足f(x2-3x-3)<f(1)的实数x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的偶函数,当x>0时,f(x)=
1
x
,设a=f(
3
2
),b=f(log2
1
2
),c=f(
32
),则a,b,c的大小关系为
 

查看答案和解析>>

同步练习册答案