精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为分别为的左顶点和上顶点,若的中点的纵坐标为.分别为的左、右焦点.

1)求椭圆的方程;

2)设直线交于两点,的重心分别为.若原点在以为直径的圆内,求实数的取值范围.

【答案】1;(2

【解析】

1)根据离心率、中点坐标和椭圆关系可构造方程组求得,进而得到椭圆方程;

2)将方程与椭圆方程联立,得到韦达定理的形式;根据重心的坐标表示和点与圆的位置关系可得到,代入韦达定理的结论可构造不等式求得的范围,验证后确定满足即可.

1)设椭圆的半焦距为,由题意有

,且,结合,解得:

∴椭圆的方程为.

2)设

联立方程消去得:

可得:,解得:

由题意得:的重心

∵原点在以为直径的圆内,∴,即.

变形为,解得:,满足

即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免书写危机,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160184之间,将测试结果按如下方式分成六组:第1,第2,第6,如图是按上述分组方法得到的频率分布直方图.

1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;

2)试估计该市市民正确书写汉字的个数的众数与中位数;

3)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市同组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,A(﹣20),B20),P为不在x轴上的动点,直线PAPB的斜率满足kPAkPB

1)求动点P的轨迹Γ的方程;

2)若MN是轨迹Γ上两点,kMN1,求OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个长方形木块,三个侧面积分别为81224,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为(

A.2B.C.4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,,二面角的大小为

(1)若MBC的中点,N在线段DC上,,求证:平面AMN

(2)当BP与平面ACD所成角最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)求数列的通项公式;

2)已知数列的通项公式为,若对于一切,不等式恒成立,求实数的取值范围.

3)设,是否存在正整数,使得数列中存在某项满足成等差数列?若存在,求出符合题意的的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的极值点.

(Ⅰ)求实数的值;

(Ⅱ)求证:函数存在唯一的极小值点,且.

(参考数据:

查看答案和解析>>

同步练习册答案