精英家教网 > 高中数学 > 题目详情
2.若空间直线l的方向向量为$\overrightarrow{t}$,平面α的法向量为$\overrightarrow{n}$,$\overrightarrow{t}$与$\overrightarrow{n}$的夹角θ>$\frac{π}{2}$,则l与α所成的角为θ-$\frac{π}{2}$.

分析 根据题意,画出图形,结合图形求出直线l与平面α所成的角.

解答 解:空间直线l的方向向量为$\overrightarrow{t}$,平面α的法向量为$\overrightarrow{n}$,$\overrightarrow{t}$与$\overrightarrow{n}$的夹角为θ>$\frac{π}{2}$,
∴$\overrightarrow{t}$与平面α的法向量$\overrightarrow{n}$的较小夹角为π-θ,
∴直线l与平面α所成的角为φ=$\frac{π}{2}$-(π-θ)=θ-$\frac{π}{2}$,如图所示.
故答案为:θ-$\frac{π}{2}$.

点评 本题考查了空间直线与平面所成的角的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}+2ax-a-6,x<0}\\{3{x}^{2}-(a+3)x+a,x≥0}\end{array}\right.$,当a=1时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数y=x2-(a+2)x+a.
(1)求证:不论a为任何实数,函数的图象与x轴都有两个交点;
(2)试求:当a为何值时,函数图象与x轴的两个交点之间的距离等于2;
(3)函数图象与x轴的两个交点分别位于x=2的两侧,a的取值如何?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,S△ABC=15$\sqrt{3}$,A+C=$\frac{B}{2}$,a+b+c=30,求三角形各边边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知P={1,2,3,4,5},Q={3,4,5,6,7},记$\widehat{P}$={n|2n+1∈P,n∈N},$\widehat{Q}$={n|2n+1∈Q,n∈N},求($\widehat{P}$∩∁N$\widehat{Q}$)∪($\widehat{Q}$∩∁N$\widehat{P}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正数a、b、c满足a+b+c=1,则$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥V-ABC中,点E∈VA,点F∈VC,经过EF作一个截面γ,使VB∥平面γ,试作平面γ与三棱锥V-ABC表面的交线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知四棱锥P-ABCD的底面是矩形.PA⊥AB,PA⊥AC,M,N分别是AB,PC的中点.
(1)证明:BC⊥面PAB;
(2)求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=2x+3,g(2x-1)=f(x2-1).则 g(x+1)=($\frac{1}{2}$x+1)2+1.

查看答案和解析>>

同步练习册答案