精英家教网 > 高中数学 > 题目详情
11.已知数列{an}中,a1=1,前n项和Sn=$\frac{n+2}{3}$an
(1)求a2,a3,及{an}的通项公式.
(2)求{$\frac{1}{a_n}$}的前n项和Tn,并证明:1≤Tn<2.

分析 (1)根据已知等式确定出a2,a3,得出{an}的通项公式即可;
(2)表示出{$\frac{1}{a_n}$}的前n项和Tn,根据前n项和Tn为递增数列,确定出Tn的范围,即可得证.

解答 解:(1)由S2=$\frac{4}{3}$a2,a1=1,得到3(a1+a2)=4a2
解得:a2=3a1=3;
由S3=$\frac{5}{3}$a3得3(a1+a2+a3)=5a3
解得:a3=$\frac{3}{2}$(a1+a2)=6.
由题设知a1=1,
当n>1时有an=Sn-Sn-1=$\frac{n+2}{3}$an-$\frac{n+1}{3}$an-1
整理得:an=$\frac{n+1}{n-1}$an-1
于是a1=1,a2=$\frac{3}{1}$a1,a3=$\frac{4}{2}$a2,…,an-1=$\frac{n}{n-2}$an-2,an=$\frac{n+1}{n-1}$an-1
将以上n个等式两端分别相乘,整理得an=$\frac{n(n+1)}{2}$,
综上,{an}的通项公式an=$\frac{n(n+1)}{2}$;
(2)∵$\frac{1}{{a}_{n}}$=$\frac{2}{n(n+1)}$,
∴Tn=2[$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$]=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=2(1-$\frac{1}{n+1}$)=2-$\frac{2}{n+1}$<2,即Tn<2,
又Tn+1>Tn,{Tn}单调增,
∴Tn>=T1=1,
则1≤Tn<2.

点评 此题考查了数列的求和,确定数列的通项公式,拆项法,以及数列的递推式,熟练掌握数列的性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.正项等比数列{an}中,a1,a4029为方程x2-10x+16=0的两根,则log2a2015的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=PD=2,E,F,G分别是线段PA,PD,CD的中点
(1)求证:PB∥平面EFG;
(2)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为$\frac{4}{5}$,若存在,求出DQ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(sinx+cosx,-cosx),$\overrightarrow{b}$=(sinx+cosx,sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)x∈[-$\frac{π}{6}$,$\frac{3π}{8}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$ax2+2x-lnx,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)(  )
A.133πB.100πC.66πD.166π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:关于x的函数y=(2a-1)x在[1,+∞)上是减函数.若“p且q”为真命题,则实数a的取值范围是(  )
A.(-∞,$\frac{2}{3}$]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$]D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{x^2}-7x-18≤0\\{x^2}+2x-8>0.\end{array}\right.$.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若?p是?q的必要不充分要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=2py(p>0)的焦点为F(0,1),过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率$e=\frac{{\sqrt{3}}}{2}$.
(1)分别求抛物线C和椭圆E的方程;
(2)经过A,B两点分别作抛物线C的切线l1,l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′,M′B′(A′,B′为切点),使得直线A′B′过点F?若存在,求出点M′及两切线方程,若不存在,试说明理由.

查看答案和解析>>

同步练习册答案