精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)> 恒成立,求整数k的最大值;
(3)求证:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3

【答案】
(1)解:∵f(x)= (x>0),

∴f′(x)= [ ]= [ ]

∵x>0,∴x2>0, ,ln(x+1)>0,∴f′(x)<0,

∴函数f(x)在(0,+∞)上是减函数


(2)解:f(x)> 恒成立,即h(x)= >k恒成立,

即h(x)的最小值大于k.

而h′(x)= ,令g(x)=x﹣1﹣ln(x+1)(x>0),

则g′(x)= ,∴g(x)在(0,+∞)上单调递增,

又g(2)=1﹣ln3<0,g(3)=2﹣2ln2>0,

∴g(x)=0存在唯一实根a,且满足a∈(2,3),a=1+ln(a+1)

当x>a时,g(x)>0,h′(x)>0,当0<x<a时,g(x)<0,h′(x)<0,

∴h(x)min=h(a)= =a+1∈(3,4)

故正整数k的最大值是3


(3)解:由(Ⅱ)知 (x>0)

∴ln(x+1)> ﹣1=2﹣ >2﹣

令x=n(n+1)(n∈N*),则ln[1+n(n+1)]>2﹣

∴ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]

>(2﹣ )+(2﹣ )+…+[2﹣ ]

=2n﹣3[ ]

=2n﹣3(1﹣ )=2n﹣3+ >2n﹣3

∴(1+1×2)(1+2×3)…[1+n(n+1)]>e2n3


【解析】(1)对函数f(x)求导数,可判f′(x)<0,进而可得单调性;(2)问题转化为h(x)= >k恒成立,通过构造函数可得h(x)min∈(3,4),进而可得k值;(3)由(Ⅱ)知 (x>0),可得ln(x+1)>2﹣ ,令x=n(n+1)(n∈N*),一系列式子相加,由裂项相消法可得ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]>2n﹣3,进而可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱ABC﹣A1B1C1的侧面AA1C1C是菱形,侧面ABB1A1⊥侧面AA1C1C,A1B=AB=AA1=2,△AA1C1的面积为 ,且∠AA1C1为锐角.
(I) 求证:AA1⊥BC1
(Ⅱ)求锐二面角B﹣AC﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦距为 ,且过点 ,设 上的两个动点,线段 的中点 的横坐标为 ,线段 的中垂线交椭圆 两点.

(1)求椭圆 的方程;

(2)设点纵坐标为m,求直线的方程,并求出 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,函数 ,设函数f(x)的最大值为M,最小值为N,则(
A.M+N=8
B.M+N=10
C.M﹣N=8
D.M﹣N=10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,把函数的偶数零点按从小到大的顺序排成一个数列,该数列的前10项的和等于( )

A. 45 B. 55 C. 90 D. 110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内两点P,Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q关于原点对称,则对称点(P,Q)是函数y=f(x)的一个“伙伴点组”(点对(P,Q)与(Q,P)看作同一个“伙伴点组”).则下列函数中,恰有两个“伙伴点组”的函数是(填空写所有正确选项的序号)
①y= ;②y= ;③y= ;④y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=﹣xn+3ax(a∈R,n∈N+),若对任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,则a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

同步练习册答案