精英家教网 > 高中数学 > 题目详情
13.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:
第一步:构造数列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,…,$\frac{1}{n}$.①
第二步:将数列①的各项乘以n,得到数列(记为)a1,a2,a3,…,an.则a1a2+a2a3+…+an-1an=(  )
A.n2B.(n-1)2C.n(n-1)D.n(n+1)

分析 ak=$\frac{n}{k}$.n≥2时,ak-1ak=$\frac{{n}^{2}}{(k-1)k}$=n2$(\frac{1}{k-1}-\frac{1}{k})$.利用“裂项求和”方法即可得出.

解答 解:∵ak=$\frac{n}{k}$.
n≥2时,ak-1ak=$\frac{{n}^{2}}{(k-1)k}$=n2$(\frac{1}{k-1}-\frac{1}{k})$.
∴a1a2+a2a3+…+an-1an=n2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$
=${n}^{2}(1-\frac{1}{n})$=n(n-1).
故选:C.

点评 本题考查了“裂项求和”方法、数列通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\frac{{4}^{x}}{{4}^{x}+1}$,若[x]表示不超过x的最大整数,则函数y=[f(x)-$\frac{1}{2}$]+[f(x)+$\frac{1}{2}$]的值域是(  )
A.{0,-1}B.{0,1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知扇形的面积为5,周长为9,则该扇形的圆心角为(  )
A.$\frac{5}{2}$B.$\frac{8}{5}$C.$\frac{5}{2}$或$\frac{8}{5}$D.$\frac{5}{2}$或$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a=log23,b=2.11.1,c=lg2+lg5,则a,b,c的大小关系为(  )
A.b>a>cB.a>b>cC.c>b>aD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校为了了解高三学生体育达标情况,在高三学生体育达标成绩中随机抽取50个进行调研,按成绩分组:第l组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:若要在成绩较高的第3,4,5组中用分层抽样抽取6名学生进行复查:
(1)已知学生甲的成绩在第5组,求学生甲被抽中复查的概率;
(2)在已抽取到的6名学生中随机抽取2名学生接受篮球项目的考核,求其中一人在第3组,另一人在第4组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若过点p(1,$\sqrt{3}$)作圆O:x2+y2=1的两条切线,切点分别为A、B两点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线y=1+$\sqrt{4-{x}^{2}}$与直线kx-y-2k+4=0有两个交点时,实数k取值范围是(  )
A.($\frac{5}{12}$,$\frac{3}{4}$]B.($\frac{5}{12}$,$\frac{3}{4}$)C.($\frac{1}{3}$,$\frac{3}{4}$]D.(0,$\frac{5}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC中,$a=2\sqrt{3},b=2,B=30°$,则角A=60°,或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角 A、B、C 的对边分别为a、b、c,已知A=$\frac{π}{3}$,a=2$\sqrt{21}$,b=10,则c=(  )
A.2 或8B.2C.8D.21

查看答案和解析>>

同步练习册答案