精英家教网 > 高中数学 > 题目详情
已知函数是定义在上的单调奇函数, 且.
(Ⅰ)求证函数上的单调减函数;
(Ⅱ) 解不等式.

(Ⅰ)证明见解析
(Ⅱ)原不等式的解集为

(Ⅰ)证明:∵函数是奇函数 ∴
∴函数不是上的增函数--------------------------------2分
又函数上单调 ∴函数上的单调减函数-------------------4分
(Ⅱ)由----------6分
由(Ⅰ)知函数上的单调减函数 ∴----------------8分
,--------------------------------10分
 ∴原不等式的解集为--------------------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(Ⅰ) 求证:为奇函数的充要条件是
(Ⅱ) 设常数,且对任意恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是定义在 [ – 1,1 ] 上的奇函数,且,若m时有
(1)用定义证明在 [ – 1,1 ] 上是增函数;
(2)若成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求的单调增区间和单调减区间;
(2)若当时(其中e=2.71828…),不等式恒成立,求实数m的取值范围;
(3)若关于x的方程上恰有两个相异的实根,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知幂函数为偶函数且在区间上是单调增函数.
⑴求函数的解析式;
⑵设函数,若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知正弦波图形如下:

此图可以视为函数y=Asin(ωx+)(A>0,ω>0,||<)图象的一部分,试求出其解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某厂家根据以往的经验得到有关生产销售规律如下:每生产(百台),其总成本为(万元),其中固定成本2万元,每生产1百台需生产成本1万元(总成本固定成本生产成本);销售收入(万元)满足:(Ⅰ)要使工厂有盈利,求的取值范围;
(Ⅱ)求生产多少台时,盈利最多?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的定义域;
(2)在函数的图象上是否存在不同的两点,使过这两点的直线平行于轴;
(3)当满足什么条件时,上恒取正值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我国储蓄存款采取实名制并征收利息税,利息税由各银行储蓄点代扣代收。某人在2001年9月存入人民币1万元,存期一年,年利率为2.25%,到期时净得本金和利息共计10180元,则利息税的税率是:                   (  )
A.8%B.20%C.32%D.80%

查看答案和解析>>

同步练习册答案