精英家教网 > 高中数学 > 题目详情

【题目】如图,五边形中,四边形为长方形,为边长为的正三角形,将沿折起,使得点在平面上的射影恰好在上.

(Ⅰ)当时,证明:平面平面

(Ⅱ)若,求平面与平面所成二面角的余弦值的绝对值.

【答案】(Ⅰ)证明见解析;(Ⅱ).

【解析】

试题

Ⅰ)作,垂足为,依题意得平面平面,结合勾股定理可得平面,平面平面.

由几何关系,以轴建立空间直角坐标系,由题意可得平面的法向量平面的法向量.计算可得平面与平面所成二面角的余弦值的绝对值为.

试题解析:

Ⅰ)作,垂足为,依题意得平面

平面

利用勾股定理得,同理可得.

中,

平面,又平面

所以平面平面

Ⅱ)连结

,又四边形为长方形,.

中点为,得,连结

其中

由以上证明可知互相垂直,不妨以轴建立空间直角坐标系.

是平面的法向量,

则有

是平面的法向量,

则有

.

所以平面与平面所成二面角的余弦值的绝对值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知空间几何体中,均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面.

(1)试在平面内作一条直线,使直线上任意一点的连线均与平面平行,并给出详细证明;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,函数在第一象限内的图像如图所示,试做如下操作:把x轴上的区间等分成n个小区间,在每一个小区间上作一个小矩形,使矩形的右端点落在函数的图像上.若用表示第k个矩形的面积,表示这n个叫矩形的面积总和.

1)求的表达式;

2)利用数学归纳法证明,并求出的表达式

3)求的值,并说明的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上的点.

(1)过点作直线相切,求切线的方程;

(2)如果存在过点的直线与抛物线交于两点,且直线的倾斜角互补,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,其中,点是椭圆的右顶点,射线与椭圆的交点为.

1)求点的坐标;

2)设椭圆的长半轴、短半轴的长分别为,当的值在区间中变化时,求的取值范围;

3)在(2)的条件下,以为焦点,为顶点且开口方向向左的抛物线过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为2的正方形,底面,四棱锥的体积M的中点.

1)求异面直线所成角的余弦值;

2)求点B到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数.

(1)求函数的单调区间;

(2)若存在,使得成立,求实数的取值范围;

(3)定义:如果实数满足, 那么称更接近.对于(2)中的,问:哪个更接近?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的曲线是圆C

(1)若直线l与圆C相交于MN两点,且O为坐标原点),求实数m的值;

2)当时,设T为直线n上的动点,过T作圆C的两条切线TGTH,切点分别为GH,求四边形TGCH而积的最小值.

查看答案和解析>>

同步练习册答案