精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥中,平面平面

(1)证明:在线段上存在一点,使得平面

(2)若,在(1)的条件下,求三棱锥的体积.

【答案】(1)见解析;(2) .

【解析】试题分析:(1)的中点,易得:四边形是平行四边形,从而,所以平面;(2)的中点,∴到平面的距离等于到平面的距离的一半从而易得三棱锥的体积.

试题解析:

(1)如图,取的中点 的中点,连接

的中位线,∴

依题意得, ,则有 ,∴四边形是平行四边形,∴

平面 平面平面

(2)∵平面平面,平面平面 平面,故平面

的中点,

到平面的距离等于到平面的距离的一半,且平面

∴三棱锥的高是2,

在等腰中, 边上的高为

的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DBCE.

(1)求证:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局.在一局比赛中,甲胜乙的概率为 ,甲胜丙的概率为 ,乙胜丙的概率为 .比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束.
(1)求只进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为ξ,求ξ的概率分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若偶函数f(x)在(﹣∞,﹣1]上是增函数,则下列关系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数.

I)若曲线在点处的切线平行于,的值;

II)求函数的极值;

III)当,若直线与曲线没有公共点,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=a|x﹣b|+c满足①函数f(x)的图象关于x=1对称;②在R上有大于零的最大值;③函数f(x)的图象过点(0,1);④a,b,c∈Z,试写出一组符合要求的a,b,c的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为(﹣∞,a)∪(a,+∞),f(x)≥0的解集为M,f(x)<0的解集为N,则下列结论正确的是(  )
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数f(x)的值域是;若f[f(x0)]=2,则x0=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面关于集合的表示正确的个数是(  )
①{2,3}≠{3,2}; ②{(x , y)|x+y=1}={y|x+y=1};
③{x|x>1}={y|y>1}; ④{x|x+y=1}={y|x+y=1}.
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案