精英家教网 > 高中数学 > 题目详情

【题目】10名乒乓球选手进行单循环赛.比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4.则恰好胜了两场的选手有______.

【答案】1

【解析】

可以证明,在所给条件下没有任何2名选手所胜的场次相同.

从而,10名选手胜的场次取10个数:,故恰胜两场的人数为1.

若不然,设存在胜的场次相同,不妨设.

于是,在败于的选手中必存在,使得

否则,凡败于的选手也败于就至少比多胜一场(的那一场),

胜的场次相同矛盾.

因此,找到了3名选手,使得.

对于可加进2名选手,这5名选手中必有1名选手负于其余4名选手,

且不是中任何1名选手,记为.

同样,对于再加进2名选手(不含),又可找到1名选手负于其余4名选手,

且不是,记为.

这样,不同的5名选手中无任何1名选手胜其余4名选手,

与已知条件矛盾.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,若输出的数据为141,则判断框中应填入的条件为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数为偶函数,求实数的值;

(2)若,且函数上是单调函数,求实数的值;

(3)若,若当时,总有,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个结论:

①过点,在两轴上的截距相等的直线方程是

②若是等差数列的前n项和,则

③在中,若,则是等腰三角形;

④已知,且,则的最大值是2.

其中正确的结论是________(写出所有正确结论的番号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x) 为奇函数.

(1)b的值;

(2)证明:函数f(x)在区间(1,+∞)上是减函数;

(3)解关于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)是定义在上的奇函数.

(Ⅰ)求实数的值;

(Ⅱ)判断并用定义证明的单调性;

(Ⅲ)若,且成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有(

A.150B.120C.240D.540

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与直线y=m分别交于AB两点,则(

A.f(x)图像上任一点与曲线g(x)上任一点连线线段的最小值为2+ln2

B.m使得曲线g(x)B处的切线平行于曲线f(x)A处的切线

C.函数f(x)-g(x)+m不存在零点

D.m使得曲线g(x)在点B处的切线也是曲线f(x)的切线

查看答案和解析>>

同步练习册答案