精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若在区间上同时存在函数的极值点和零点,求实数的取值范围.

2)如果对任意,有,求实数的取值范围.

【答案】12

【解析】

1)利用导数得出的单调性以及极值,画出其函数图象,根据图象,得出实数的取值范围;

2)结合函数的单调性,构造函数,由得出函数上单调递减,则上恒成立,即上恒成立,得出的最小值,即可得出实数的取值范围.

1)函数的定义域为

上单调递增,在上单调递减,则极大值为

时,;当时,

,得在区间上存在唯一零点,则函数的图象,如下图所示

在区间上同时存在函数的极值点和零点

,解得

2)由(1)可知,函数上单调递减

不妨设,由,得

函数上单调递减

上恒成立,即上恒成立

时,的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an

Ⅱ)求数列{n2an}的前n项和Tn

Ⅲ)对任意nN*,使得 恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D为侧棱AA1的中点.

1)求异面直线DC1B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其“骑手”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元.

假设同一公司的“骑手”一日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求乙公司的“骑手”一日工资y(单位:元)与送餐单数n(n∈N﹡)的函数关系;

(Ⅱ)若将频率视为概率,回答以下问题:

(i)记乙公司的“骑手”日工资为X(单位:元),求X的分布列和数学期望;

(ⅱ)小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中,由中的元素构成两个相应的集合:

其中是有序数对,集合中的元素个数分别为

若对于任意的,总有,则称集合具有性质

)检验集合是否具有性质并对其中具有性质的集合,写出相应的集合

)对任何具有性质的集合,证明

)判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC,∠ACB=,AC=3, BC=2,P△ABC内的一点.

(1)若△BPC是以BC为斜边的等腰直角三角形PA长;

(2)∠BPC=,求△PBC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

中,成立的充要条件;

②当时,有

③已知 是等差数列的前n项和,若,则

④若函数上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线平行OM,且与椭圆交于A、B两个不同的点。

(Ⅰ)求椭圆方程;

()AOB为钝角,求直线轴上的截距的取值范围;

()求证直线MA、MB轴围成的三角形总是等腰三角形。

查看答案和解析>>

同步练习册答案