【题目】已知函数.
(1)若在区间,上同时存在函数的极值点和零点,求实数的取值范围.
(2)如果对任意、,有,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an;
(Ⅱ)求数列{n2an}的前n项和Tn;
(Ⅲ)对任意n∈N*,使得 恒成立,求实数λ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点.
(1)求异面直线DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家外卖公司,其“骑手”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元.
假设同一公司的“骑手”一日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:
(Ⅰ)求乙公司的“骑手”一日工资y(单位:元)与送餐单数n(n∈N﹡)的函数关系;
(Ⅱ)若将频率视为概率,回答以下问题:
(i)记乙公司的“骑手”日工资为X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,其中,由中的元素构成两个相应的集合:
, .
其中是有序数对,集合和中的元素个数分别为和.
若对于任意的,总有,则称集合具有性质.
(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.
(Ⅱ)对任何具有性质的集合,证明.
(Ⅲ)判断和的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=,AC=3, BC=2,P是△ABC内的一点.
(1)若△BPC是以BC为斜边的等腰直角三角形,求PA长;
(2)若∠BPC=,求△PBC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;
(2)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①中,是成立的充要条件;
②当时,有;
③已知 是等差数列的前n项和,若,则;
④若函数为上的奇函数,则函数的图象一定关于点成中心对称.其中所有正确命题的序号为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线平行OM,且与椭圆交于A、B两个不同的点。
(Ⅰ)求椭圆方程;
(Ⅱ)若AOB为钝角,求直线在轴上的截距的取值范围;
(Ⅲ)求证直线MA、MB与轴围成的三角形总是等腰三角形。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com