【题目】已知是定义在上的奇函数,当时,(其中,是自然对数的底数,=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若时,方程有实数根,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是件.每生产一件服装,成本增加100元,生产件服装的收入函数是,记,分别为每天生产件服装的利润和平均利润().
(1)当时,每天生产量为多少时,利润有最大值;
(2)每天生产量为多少时,平均利润有最大值,并求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,平面,四边形是直角梯形,其中,. ,.
(1)求异面直线与所成角的大小;
(2)若平面内有一经过点的曲线,该曲线上的任一动点都满足与所成角的大小恰等于与所成角.试判断曲线的形状并说明理由;
(3)在平面内,设点是(2)题中的曲线在直角梯形内部(包括边界)的一段曲线上的动点,其中为曲线和的交点.以为圆心,为半径的圆分别与梯形的边、交于、两点.当点在曲线段上运动时,试求圆半径的范围及的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆与轴,轴的正半轴分别交于两点,原点到直线的距离为,该椭圆的离心率为.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在四棱锥中,底面是正方形,.
(1)如图2,设点为的中点,点为的中点,求证: 平面;
(2)已知网格纸上小正方形的边长为,请你在网格纸上用粗线画图1中四棱锥的府视图(不需要标字母),并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,点.
(1)设是椭圆上任意的一点,是点关于坐标原点的对称点,记,求的取值范围;
(2)已知点,,是椭圆上在第一象限内的点,记为经过原点与点的直线,为截直线所得的线段长,试将表示成直线的斜率的函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com