精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设点P是椭圆C上异于AB的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.

【答案】(Ⅰ);(Ⅱ)以BD为直径的圆与直线PF相切.

【解析】

(Ⅰ)根据条件解得a,b值,(Ⅱ)设点Px0y0),解得D点坐标,即得以BD为直径的圆圆心坐标以及半径,再根据直线PF方程,利用圆心到直线PF距离与半径大小关系作判断.

(Ⅰ)依题可知Ba0),a=2,因为,所以c=1

故椭圆C的方程为

(Ⅱ)以BD为直径的圆与直线PF相切.

证明如下:设点Px0y0),则

①当x0=1时,点P的坐标为(1,±),直线PF的方程为x=1

D的坐标为(2,±2).

此时以BD为直径的圆与直线PF相切.

②当≠1时直线AP的方程为

D的坐标为BD中点E的坐标为,故

直线PF的斜率为

故直线PF的方程为,即

所以点E到直线PF的距离,故以BD为直径的圆与直线PF相切.

综上得,当点P运动时,以BD为直径的圆与直线PF相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.数列满足.

1)若,且,求正整数的值;

2)若数列均是等差数列,求的取值范围;

3)若数列是等比数列,公比为,且,是否存在正整数,使成等差数列,若存在,求出一个的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],样本数据分组为[9698),[98100),[100102)[102104),[104106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,直线,直线与椭圆交于不同的两点,点和点关于轴对称,直线轴交于点

1)若点是椭圆的一个焦点,求该椭圆的长轴的长度;

2)若,且,求的值;

3)若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乳业公司生产甲、乙两种产品,需要ABC三种苜蓿草饲料,生产1个单位甲种产品和生产1个单位乙种产品所需三种苜蓿草饲料的吨数如下表所示:

产品

苜蓿草饲料

A

B

C

4

8

3

5

5

10

现有A种饲料200吨,B种饲料360吨,C种饲料300吨,在此基础上生产甲乙两种产品,已知生产1个单位甲产品,产生的利润为2万元;生产1个单位乙产品,产生的利润为3万元,分别用xy表示生产甲、乙两种产品的数量.

1)用xy列出满足生产条件的数学关系式,并画出相应的平面区域;

2)问分别生产甲乙两种产品多少时,能够产出最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

讨论的单调性;

的极值点,且曲线在两点 处的切线相互平行,这两条切线在轴上的截距分别为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1kx-y+4=0与直线l2x+ky-3=0相交于点P,则当实数k变化时,点P到直线4x-3y+10=0的距离的最大值为(  )

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案