精英家教网 > 高中数学 > 题目详情
(2008•闸北区一模)在△ABC中,内角A,B,C所对的边长分别是a,b,c.
(Ⅰ)若c=2,C=
π
3
,且△ABC的面积S=
3
,求a,b的值;
(Ⅱ)若sinC+sin(B-A)=sin2A,试判断△ABC的形状.
分析:(Ⅰ)根据余弦定理,得c2=a2+b2-ab=4,再由面积正弦定理得
1
2
absinC=
3
,两式联解可得到a,b的值;
(Ⅱ)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC的形状的形状加以判断,可以得到结论.
解答:解:(Ⅰ)由余弦定理 及已知条件得,a2+b2-ab=4,….(3分)
又因为△ABC的面积等于
3
,所以
1
2
absinC=
3
,得ab=4.(5分)
联立方程组
a2+b2-ab=4
ab=4
解得a=2,b=2.(7分)
(Ⅱ)由题意得:sinC+sin(B-A)=sin2A
得到sin(A+B)+sin(B-A)=sin2A=2sinAcoA
即:sinAcosB+cosAsinB+sinAcosB-cosAsinB=2sinAcoA
所以有:sinBcosA=sinAcosA,(10分)
当cosA=0时,A=
π
2
,△ABC为直角三角形(12分)
当cosA≠0时,得sinB=sinA,由正弦定理得a=b,
所以,△ABC为等腰三角形.(14分)
点评:本题考查了正弦定理与余弦定理的应用,属于中档题.熟练掌握三角函数的有关公式,是解好本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•闸北区一模)已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an
-3n+21),其中λ为实数,n为正整数.Sn为数列{bn}的前n项和.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)对于给定的实数λ,试求数列{bn}的通项公式,并求Sn
(3)设0<a<b(a,b为给定的实常数),是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闸北区一模)复数
3
2
i+
1
1-i
的虚部是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闸北区一模)若f(x+2)=
tanx,x≥0
log2(-x),x<0
,则f(
π
4
+2)•f(-2)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闸北区一模)如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求异面直线EF与BD所成的角β.

查看答案和解析>>

同步练习册答案