精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥 平面 .

求证:平面平面

求二面角的余弦值.

【答案】见解析.

【解析】试题分析:()通过证明平面内的直线BC平面,证明平面平面.

由()知, 的方向为轴正方向, 的方向为轴正方向,过点的平行线为轴正方向,建立空间直角坐标系.用向量法求解即可.

试题解析:平面.又

.故平面.又平面,∴平面平面.

由(Ⅰ)知, ,设的方向为轴正方向, 的方向为轴正方向,过点的平行线为轴正方向,建立如图所示的空间直角坐标系.

不防设,又∵

.连接,又,平面.

.

为平面的法向量,

,即,可取.

为平面的法向量,∴.

又二面角的平面角为钝角,∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 图象上有且仅有四个不同的点关于直线y=e的对称点在函数g(x)=kx+2e+1的图象上,则实数k的取值范围为(
A.(1,2)
B.(﹣1,0)
C.(﹣2,﹣1)
D.(﹣6,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,a,b,c为角A,B,C所对的边,且2cos2 +(cosB﹣ sinB)cosA=1.
(1)求角A的值;
(2)求f(x)=4cosxcos(x﹣A)在x∈[0, ]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校自主招生一次面试成绩的茎叶图和频率分布直方图均受到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:

1)求参加此次高校自主招生面试的总人数面试成绩的中位数及分数在内的人数

2)若从面试成绩在内的学生中任选两人进行随机复查求恰好有一人分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的菱形, 平面 是棱上的一个点, 的中点.

(1)证明: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学将全部高一学生分成两个成绩相当(成绩的均值、方差都相同)的级部, 级部采用传统形式的教学方式, 级部采用新型的基于信息化的自主学习教学方式.为了解教学效果,期末考试后分别从两个级部中各随机抽取30名学生的数学成绩进行统计,做出茎叶图如下,记成绩不低于127分者为“优秀”.

1级部样本的30个个体中随机抽取1个,求抽出的为“优秀”的概率

2由以上数据填写下面列联表,并判断是否有的把握认为“优秀”与教学方式有关.

附表

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校自主招生一次面试成绩的茎叶图和频率分布直方图均受到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:

1)求参加此次高校自主招生面试的总人数面试成绩的中位数及分数在内的人数

2)若从面试成绩在内的学生中任选两人进行随机复查求恰好有一人分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,函数

(1)求证:函数不是奇函数;

(2)当时,解关于的不等式

(3)求函数的值域(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,离心率为,椭圆与轴与左点与点的距离为

(1)求椭圆方程;

(2)过点的直线与椭圆交于不同的两点,当面积为时,求

查看答案和解析>>

同步练习册答案