精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面 平面

)求证: 平面

)求平面与平面所成角的余弦值

【答案】见解析

【解析】试题分析: 由直角及边长关系得,又因为平面平面,运用性质定理证得平面,由判定定理证得平面 

建立空间直角坐标系,求法向量,计算可得。

解析:()在底面

所以 ,所以

所以

又平面平面平面平面 平面

所以平面

平面,所以

所以平面. 

)分别延长相交于一点,连结,则直线即为所求直线

在平面内过(如图),

又平面平面平面平面 平面

所以平面,又

所以两两互相垂直.以为原点,向量的方向分别为轴、轴、轴的正方向建立空间直角坐标系(如图),另设

所以

是平面的法向量,

,得.

显然是平面的一个法向量.

设二面角的大小为为锐角).

所以

所以二面角的的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分别是A1B,B1C1的中点.

(1)求证:MN//平面ACC1A1

(2)求点N到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数, .

1求证:

2若存在,使的取值范围

3若对任意的恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·广州模拟)如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABCABAC2AA1BAC120°DD1分别是线段BCB1C1的中点,过线段AD的中点PBC的平行线,分别交ABAC于点MN.

(1)证明:MN⊥平面ADD1A1

(2)求二面角AA1MN的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1③平面α⊥平面BCFE.其中正确的命题有(  )

A. ①② B. ②③

C. ①③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的偶函数yf(x)满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,yf(x)单调递减,给出以下四个命题:

f(2)=0;②直线x=-4为函数yf(x)图象的一条对称轴;③函数yf(x)在[8,10]上单调递增;④若关于x的方程f(x)=m在[-6,-2]上的两根分别为x1x2,则x1x2=-8.

其中所有正确命题的序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1a11b3a4b1b2b3a3a4.

(1)求数列{an}{bn}的通项公式;

(2)cnanbn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都为正数的数列{an}满足a1=1, =2an+1(an+1)-an.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)设bn,求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·黄冈质检)如图,在棱长均为2的正四棱锥PABCD中,点EPC的中点,则下列命题正确的是(  )

A. BE∥平面PAD,且BE到平面PAD的距离为

B. BE∥平面PAD,且BE到平面PAD的距离为

C. BE与平面PAD不平行,且BE与平面PAD所成的角大于30°

D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30°

查看答案和解析>>

同步练习册答案