【题目】设n∈N* , f(n)=3n+7n﹣2.
(1)求f(1),f(2),f(3)的值;
(2)证明:对任意正整数n,f(n)是8的倍数.
【答案】
(1)解:∵n∈N*,f(n)=3n+7n﹣2,
∴f(1)=3+7﹣2=8,
f(2)=32+72﹣2=56,
f(3)=33+73﹣2=368
(2)证明:用数学归纳法证明如下:
①当n=1时,f(1)=3+7﹣2=8,成立;
②假设当n=k时成立,即f(k)=3k+7k﹣2能被8整除,
则当n=k+1时,
f(k+1)=3k+1+7k+1﹣2
=3×3k+7×7k﹣2
=3(3k+7k﹣2)+4×7k+4
=3(3k+7k﹣2)+4(7k+1),
∵3k+7k﹣2能被8整除,7k+1是偶数,
∴3(3k+7k﹣2)+4(7k+1)一定能被8整除,
即n=k+1时也成立.
由①②得:对任意正整数n,f(n)是8的倍数
【解析】(1)由n∈N* , f(n)=3n+7n﹣2,分别取n=1,2,3,能求出f(1),f(2),f(3)的值.(2)利用用数学归纳法能证明对任意正整数n,f(n)是8的倍数.
【考点精析】解答此题的关键在于理解函数的值的相关知识,掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
科目:高中数学 来源: 题型:
【题目】数列1,-3,5,-7,9,…的一个通项公式为( )
A.an=2n-1
B.an=(-1)n(1-2n)
C.an=(-1)n(2n-1)
D.an=(-1)n(2n+1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】比较a,b,c的大小,其中a=0.22 , b=20.2 , c=log0.22( )
A.b>c>a
B.c>a>b
C.a>b>c
D.b>a>c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(UA)∩(UB)=( )
A.{5,8}
B.{7,9}
C.{0,1,3}
D.{2,4,6}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b﹣a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2﹣1)+(5﹣3)=3.用[x]表示不超过x的最大整数,记{x}=x﹣[x],其中x∈R.设f(x)=[x]{x},g(x)=x﹣1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据给出的数塔猜测123456×9+7=( )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
……
A.1111110
B.1111111
C.1111112
D.1111113
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com