精英家教网 > 高中数学 > 题目详情
7.对空间任一点O和不共线三点A,B,C,能得到P,A,B,C四点共面的是(  )
A.$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$B.$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$
C.$\overrightarrow{OP}$=-$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$D.以上皆错

分析 令$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,若P,A,B,C四点共面,则x+y+z=1,进而得到答案.

解答 解:A中,$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$,1+1+1=3≠1,故P,A,B,C四点不共面;
B中,$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,$\frac{1}{3}$+$\frac{1}{3}$+$\frac{1}{3}$=1,故P,A,B,C四点共面;
C中=-$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$,-1+$\frac{1}{2}$+$\frac{1}{2}$=0≠1,故P,A,B,C四点不共面;
故选:B.

点评 本题考查的知识点是三点共线与四点共线的判定,正确理解四点共面充要条件的向量表示法,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.定义在[0,+∞)上的函数f(x)满足:对任意x,y总有f(x+y)=f(x)f(y),f(x)不恒为零,当x>0时,f(x)>1.
(1)判断f(x)的单调性;
(2)若f(2)=2,解不等式f(5x-x2)>8;
(3)设A={(x,y)|f(x2)f(y2)≤f(1)},且B={(x,y)|f(ax-y+$\sqrt{2}$)=1,a∈R},若A∩B=∅,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式ax2+3x+5>0在区间[1,6]上恒成立,则实数a的取值范围为a>-$\frac{23}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:3${\;}^{lo{g}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{sinx,x≥1}\\{{e}^{x},x<1}\end{array}\right.$.
(1)若f(x)≥1,求x的取值范围;
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=lgx-6+3x的零点x0∈(k,k+1),k∈Z,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的各项均正数,满足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$-2an+1-2an=0,其前n项和为Sn.S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,是否存在最大整数m,使得对任意n∈N*均有T2n>$\frac{m}{15}$成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线f(x)=x3+x2+x+3在x=-1处的切线恰好与抛物线y2=2px(p>0)相切,求抛物线的方程和抛物线上的切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设P、Q是单位正方体AC1的面AA1D1D、面A1B1C1D1的中心.
(1)求∠D1B1C的大小.
(2)证明:PQ∥平面AA1B1B.
(3)求异面直线PQ和B1C所成的角.

查看答案和解析>>

同步练习册答案