【题目】在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, ),若S1 , S2 , S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1
科目:高中数学 来源: 题型:
【题目】设函数f(x)=aexlnx+ ,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.
(1)求a、b;
(2)证明:f(x)>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014福建)在下列向量组中,可以把向量 =(3,2)表示出来的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E: ﹣ =1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1 , l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在 R 上的奇函数 f (x) ,设其导函数为 f x ,当 x ,0时,恒有xf x f x 0 ,令 F x xf x,则满足 F(3) F 2x 1 的实数 x 的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);
场次 | 投篮次数 | 命中次数 | 场次 | 投篮次数 | 命中次数 |
主场1 | 22 | 12 | 客场1 | 18 | 8 |
主场2 | 15 | 12 | 客场2 | 13 | 12 |
主场3 | 12 | 8 | 客场3 | 21 | 7 |
主场4 | 23 | 8 | 客场4 | 18 | 15 |
主场5 | 24 | 20 | 客场5 | 25 | 12 |
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与 的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 | 摸出红、蓝球个数 | 获奖金额 |
一等奖 | 3红1蓝 | 200元 |
二等奖 | 3红0蓝 | 50元 |
三等奖 | 2红1蓝 | 10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com