精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=a+\frac{2}{{{2^x}-1}}$(a∈R);
(1)求函数f(x)的定义域;
(2)判断函数f(x)在区间(0,+∞)的单调性,用定义给出证明;
(3)是否存在实数a使函数f(x)为奇函数,若存在求出a,不存在说明理由.

分析 (1)利用分母不为0,函数f(x)的定义域;
(2)函数f(x)在区间(0,+∞)的单调递减,用定义进行证明;
(3)假设存在实数a使函数f(x)为奇函数,由(1)可知函数f(x)的定义域{x|x≠0}关于原点对称,1则对定义域内的任意x有f(-x)=-f(x),即f(-x)+f(x)=0,列出方程,即可求出a.

解答 解:(1)由2x-1≠0解得x≠0,
所以函数f(x)的定义域为{x|x≠0}…2分
(2)函数f(x)在区间(0,+∞)的单调递减;   …3分
证明如下:任取x1,x2∈(0,+∞),且x1<x2,则
$f({x_1})-f({x_2})=\frac{2}{{{2^{x_1}}-1}}-\frac{2}{{{2^{x_2}}-1}}$=$\frac{{2({2^{x_2}}-1)-2({2^{x_1}}-1)}}{{({2^{x_1}}-1)({2^{x_2}}-1)}}$=$\frac{{2({2^{x_2}}-{2^{x_1}})}}{{({2^{x_1}}-1)({2^{x_2}}-1)}}$,
∵x1,x2∈(0,+∞),且x1<x2,∴$({2^{x_2}}-1)>0,({2^{x_2}}-1)>0$,${2^{x_2}}-{2^{x_1}}>0$,
∴f(x1)-f(x2)>0即f(x1)>f(x2),
故函数f(x)在区间(0,+∞)的单调递减.…7分
(3)假设存在实数a使函数f(x)为奇函数,
由(1)可知函数f(x)的定义域{x|x≠0}关于原点对称,
则对定义域内的任意x有f(-x)=-f(x),即f(-x)+f(x)=0
所以$a+\frac{2}{{{2^{-x}}-1}}+a+\frac{2}{{{2^x}-1}}=0$,得2a-2=0解得a=1
所以存在实数a=1使函数f(x)为奇函数.…12分

点评 本题考查的知识点是函数的奇偶性和单调性,其中熟练掌握函数奇偶性和单调性的定义及证明方法是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|x+1|,}&{x<1}\\{lg(x-1),}&{x>1}\end{array}\right.$,g(x)=x2-2x+2m-2,若函数y=f(g(x))-m有6个零点,则实数m的取值范围是(  )
A.(1,2)B.($\frac{3}{4}$,1)C.($\frac{2}{3}$,$\frac{3}{4}$)D.(0,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数$z=\frac{{{{(1+i)}^2}+2(5-i)}}{3+i}$,
(1)求|z|;
(2)若z(z+a)=b+i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若loga$\frac{4}{5}$<1,则a的取值范围是(  )
A.($\frac{4}{5}$,1)B.($\frac{4}{5}$,+∞)C.(0,$\frac{4}{5}$)∪(1,+∞)D.(0,$\frac{4}{5}$)∪($\frac{4}{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-1,x≤0\\ 3x,x>0\end{array}\right.$,若f(x)=15,则x=(  )
A.4或-4或5B.4或-4C.-4或5D.4或5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.命题“?x∈R,lgx=x-2”的否定是?x∈R,lgx≠x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x•|x|+x3+3在区间[-2015,2015]上的最大值与最小值之和为=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,(x≥0)}\\{{x}^{2}+mx-1,(x<0)}\end{array}\right.$是偶函数.
(1)求实数m的值;
(2)作出函数y=f(x)的图象,并写出其单调区间;
(3)若函数y=f(x)-k有4个零点,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=\vec m•\vec n$,其中向量$\vec m=({1,2cosx})$,$\vec n=({\sqrt{3}sin2x,cosx})$.
(1)求函数f(x)的最小正周期与单调递增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f( A)=2,b=1,△ABC的面积为$\sqrt{3}$,求△ABC外接圆半径R.

查看答案和解析>>

同步练习册答案