精英家教网 > 高中数学 > 题目详情
14.根据正弦函数、余弦函数的图象,在区间[0,2π]内解不等式组$\left\{\begin{array}{l}{sinx≥cosx}\\{sinx≥\frac{1}{2}}\end{array}\right.$.

分析 在同一坐标系中,画出正弦函数、余弦函数的图象,数形结合,可得答案.

解答 解:在同一坐标系中,画出正弦函数、余弦函数的图象,如下图所示:

由图可得:在区间[0,2π]内不等式组$\left\{\begin{array}{l}{sinx≥cosx}\\{sinx≥\frac{1}{2}}\end{array}\right.$的解集为:[$\frac{π}{4}$,$\frac{5π}{6}$]

点评 本题考查的知识点是三角函数的图象和性质,三角不等式的解法,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.绝对值不等值|x|≥5的解集为{x|x≤-5,或x≥5 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上的点到F2的最近距离为4,最远距离为16.
(1)求椭圆的方程;
(2)P为该椭圆上一点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=2sin(ωx-$\frac{π}{6}$)(ω>0)的单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),单调递减区间为[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z),则不等式f(x)≥-1的解集为{x|k$π+\frac{π}{12}$≤x≤k$π+\frac{2π}{3}$,k∈Z}∪{x|kπ+π≤x≤kπ+$\frac{13π}{12}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,求证:
(1)g(2x)=[g(x)]2+[f(x)]2
(2)求函数y=[f(x)]2+mg(x)最小值h(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图程序是求10个数的平均数,则在横线上应填写的条件为(  )
A.i<1B.i>9C.i>10D.i<11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高二学生有800名,从中抽取100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求图中α的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分、中位数、众数;(精确到个位数)
(Ⅲ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求推测高二这800名学生中数学成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,O为坐标原点,P是由不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≥1}\end{array}\right.$所确定的平面区域内的动点,点Q是直线3x+4y-7=0上任意一点,O为坐标原点,则|$\overline{OP}+\overline{OQ}$|的最小值为(  )
A.$\frac{7}{5}$B.2C.$\frac{9}{5}$D.$\frac{11}{5}$

查看答案和解析>>

同步练习册答案