精英家教网 > 高中数学 > 题目详情

【题目】已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积V;
(Ⅱ)求该几何体的面积S.

【答案】解:(Ⅰ)由三视图知该几何体是一个底面为矩形,高为4,顶点在底面的射影是底面中心的四棱锥,
∴该几何体的体积V= =64.
(Ⅱ)该四棱锥有两个侧面是全等的等腰三角形,且其高为h1= =4
另外两个侧面也是全等的等腰三角形,这两个侧面的高为 = =5,
∴该几何体的面积S=2( )+8×6=88+24

【解析】(Ⅰ)由三视图知该几何体是一个底面为矩形,高为4,顶点在底面的射影是底面中心的四棱锥,由此能求出该几何体的体积.(Ⅱ)该四棱锥有两个侧面是全等的等腰三角形,另外两个侧面也是全等的等腰三角形,由此能求出该几何体的面积.
【考点精析】掌握由三视图求面积、体积是解答本题的根本,需要知道求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦;
(Ⅲ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )+f( )等于(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.经过空间内的三个点有且只有一个平面
B.如果直线l上有一个点不在平面α内,那么直线上所有点都不在平面α内
C.四棱锥的四个侧面可能都是直角三角形
D.用一个平面截棱锥,得到的几何体一定是一个棱锥和一个棱台

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一学生周末的“阅读时间”,从高一年级中随机抽取了名学生进行调査,获得了每人的周末“阅读时间”(单位:小时),按照分成组,制成样本的频率分布直方图如图所示:

(Ⅰ)求图中的值;

(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;

(Ⅲ)用样本频率代替概率. 现从全校高一年级随机抽取名学生,其中有名学生“阅读时间”在小时内的概率为,其中.当取最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=﹣ x2+bln(x+2)在(﹣1,+∞)上是减函数,则b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R),如图是函数f(x)在[0,+∞)上的图象,
(1)求a的值,并补充作出函数f(x)在(﹣∞,0)上的图象,说明作图的理由;
(2)根据图象指出(不必证明)函数的单调区间与值域;
(3)若方程f(x)=lnb恰有两个不等实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.

(1)求成绩在区间内的学生人数及成绩在区间内平均成绩;

(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1= f(x),t2=g(x),t3=2x , 当x∈(0,1)时,试比较t1 , t2 , t3的大小.

查看答案和解析>>

同步练习册答案