【题目】已知函数f(x)=cos2,g(x)=1+sin 2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)若函数h(x)=f(x)+g(x)在区间上的最大值为2,求m的最小值.
【答案】(1)见解析;(2)
【解析】
(1)根据二倍角公式得到函数表达式,由对称轴的性质得到2x0+=kπ,进而得到2x0=kπ-,所以g(x0)=1+sin,分k为奇和偶两种情况得到结果;(2))h(x)==sin+,因为x∈,所以2x+∈,由题意得到sin在上的最大值为1,所以2m+≥.
(1)由题设知f(x)= .
因为x=x0是函数y=f(x)图象的一条对称轴,所以2x0+=kπ,
即2x0=kπ- (k∈Z).
所以g(x0)=1+sin 2x0=1+sin.
当k为偶数时,g(x0)=1+sin=1-=,
当k为奇数时,g(x0)=1+sin=1+=.
(2)h(x)=f(x)+g(x)= +1+sin 2x
= += +
=sin+.
因为x∈,所以2x+∈.
要使得h(x)在上的最大值为2,即sin在上的最大值为1.
所以2m+≥,
即m≥.所以m的最小值为
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin4x﹣cos4x的图象,可以将函数y=sin4x的图象( )
A.向右平移个单位
B.向左平移个单位
C.向右平移个单位
D.向左平移个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?
(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx(a>0),e为自然对数的底数.
(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);
(Ⅲ)在区间(1,e)上>1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为A,B.
(1)求直线PA,PB的方程;
(2)求过P点的圆C的切线长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 , 是两个非零向量,则下列哪个描述是正确的( )
A.若|+|=||﹣||,则⊥
B.若⊥ , 则|+|=||﹣||
C.若|+|=||﹣||,则存在实数λ使得=
D.若存在实数λ使得= , 则|+|=||﹣||
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求x+2y的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,渐近线方程为y=±x,且双曲线过点P(4,-).
(1)求双曲线的方程;
(2)若点M(x1,y1)在双曲线上,求的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com