【题目】已知函数.
(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;
(2)当a≥时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.
【答案】(1),单调增区间为,;(2)2个.
【解析】
(1)首先根据题中所给的函数解析式,利用,得到所满足的等量关系式,求得的值,从而得到函数的解析式,进而求得函数的单调增区间;
(2)根据条件,结合函数解析式,分类讨论,分析性质,
(1)由,得,解得.
此时,函数
所以函数的单调增区间为,.
(2)显然,不满足;
若,则,由,得,
化简,得,无解:
若,则,由,得,
化简,得.
令,.
当时,;
下面证明函数在上是单调增函数.
任取,且,
则
由于
,
所以,即,故在上是单调增函数。
因为,,
所以,又函数的图象不间断,所以函数在上有且只有一个零点.
即当时,有且只有一个实数x满足.
因为当满足时,实数也一定满足,即满足的根成对出现(互为相反数);
所以,所有满足的实数x的个数为2.
科目:高中数学 来源: 题型:
【题目】已知三点,,,曲线上任意一点满足.
(1)求的方程;
(2)动点 在曲线上,是曲线在处的切线.问:是否存在定点使得与都相交,交点分别为,且与的面积之比为常数?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣mx(m∈R). (Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有 >1成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OA=(OA//BC),则8min后该盛水筒到水面的距离为____m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC–A1B1C1中,AB=BC,D为AC的中点,O为四边形B1C1CB的对角线的交点,AC⊥BC1.求证:
(1)OD∥平面A1ABB1;
(2)平面A1C1CA⊥平面BC1D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市从高二年级随机选取1000名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前3门为理科课程,后3门为文科课程)的情况,得到如下统计表,其中“√”表示选课,“空白”表示未选.
科目 方案 人数 | 物理 | 化学 | 生物 | 政治 | 历史 | 地理 | |
一 | 220 | √ | √ | √ | |||
二 | 200 | √ | √ | √ | |||
三 | 180 | √ | √ | √ | |||
四 | 175 | √ | √ | √ | |||
五 | 135 | √ | √ | √ | |||
六 | 90 | √ | √ | √ |
(Ⅰ)在这1000名学生中,从选修物理的学生中随机选取1人,求该学生选修政治的概率;
(Ⅱ)在这1000名学生中,从选择方案一、二、三的学生中各选取2名学生,如果在这6名学生中随机选取2名,求这2名学生除选修物理以外另外两门选课中有相同科目的概率;
(Ⅲ)利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“三个内角的度数可以构成等差数列”是“中有一个内角为”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.
(1)求样本容量和频率分布直方图中的的值;
(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com