精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;

(2)当a时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.

【答案】(1),单调增区间为;(2)2个.

【解析】

1)首先根据题中所给的函数解析式,利用,得到所满足的等量关系式,求得的值,从而得到函数的解析式,进而求得函数的单调增区间;

2)根据条件,结合函数解析式,分类讨论,分析性质,

(1)由,得,解得

此时,函数

所以函数的单调增区间为

(2)显然,不满足

,则,由,得

化简,得,无解:

,则,由,得

化简,得

时,

下面证明函数上是单调增函数.

任取,且

由于

所以,即,故上是单调增函数。

因为

所以,又函数的图象不间断,所以函数上有且只有一个零点.

即当时,有且只有一个实数x满足

因为当满足时,实数也一定满足,即满足的根成对出现(互为相反数);

所以,所有满足的实数x的个数为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三点,曲线上任意一点满足

(1)的方程;

(2)动点 在曲线上,是曲线处的切线.问:是否存在定点使得都相交,交点分别为,且的面积之比为常数?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣mx(m∈R). (Ⅰ)当m=0时,讨论函数f(x)的单调性;
(Ⅱ)当b>a>0时,总有 >1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OAOA//BC),则8min后该盛水筒到水面的距离为____m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,ABBCDAC的中点,O为四边形B1C1CB的对角线的交点,ACBC1.求证:

(1)OD∥平面A1ABB1

(2)平面A1C1CA⊥平面BC1D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市从高二年级随机选取1000名学生,统计他们选修物理、化学、生物、政治、历史和地理六门课程(前3门为理科课程,后3门为文科课程)的情况,得到如下统计表,其中“√”表示选课,空白表示未选.

科目

方案 人数

物理

化学

生物

政治

历史

地理

220

200

180

175

135

90

(Ⅰ)在这1000名学生中,从选修物理的学生中随机选取1人,求该学生选修政治的概率;

(Ⅱ)在这1000名学生中,从选择方案一、二、三的学生中各选取2名学生,如果在这6名学生中随机选取2名,求这2名学生除选修物理以外另外两门选课中有相同科目的概率;

(Ⅲ)利用表中数据估计该市选课偏文(即选修至少两门文科课程)的学生人数多还是偏理(即选修至少两门理科课程)的学生人数多,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个内角的度数可以构成等差数列”是“中有一个内角为”的(  )

A. 充分不必要条件B. 必要不充分条件

C. 充要条件D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的图像在点处的切线方程;

(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]频数分别为8,2.

(1)求样本容量和频率分布直方图中的的值;

(2)估计本次竞赛学生成绩的中位数;

(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

同步练习册答案