如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,作EF⊥PB交PB于F
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求二面角C-PB-D的大小。
设AC、BD相交于点O,连接OE、BE、DF。
(1)明显可知,PA在平面EDB外,E是PC中点,O是正方形ABCD中点,所以OE是三角形APC中位线,所以有EO//PA。所以PA//平面EDB。
(2)由条件可知,BC垂直于CD,侧棱PD⊥底面ABCD,所以,PD⊥BC,PD/CD相交于点D,所以BC⊥平面PCD。因为PD=CD,E是PC中点,所以DE⊥PC,所以DE⊥平面PBC,所以DE⊥PB,又因为EF⊥PB,且DE和EF相交,所以PB⊥平面EFD
(2)以DA,DC,DP为x,y,z轴建立空间直角坐标系,设底面正方形的边长为1,易知为平面CBD的法向量,为平面PBD的法向量,=,,,二面角C-PB-D的大小为,
解析
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
如图,多面体中,两两垂直,平面平面,
平面平面,.
(1)证明四边形是正方形;
(2)判断点是否四点共面,并说明为什么?
(3)连结,求证:平面.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com