精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,与函数y=﹣e|x|的奇偶性相同,且在(﹣∞,0)上单调性也相同的是(
A.
B.y=ln|x|
C.y=x3﹣3
D.y=﹣x2+2

【答案】D
【解析】解:函数y=﹣e|x|为偶函数,且在(﹣∞,0)上单调递增.A. 为奇函数,不满足条件.
B.y=ln|x|为偶函数,当x<0时,函数为y=ln(﹣x)单调递减.不满足条件.
C.y=x3﹣3为非奇非偶函数,不满足条件.
D.y=﹣x2+2为偶函数,在(﹣∞,0)上单调递增,满足条件.
故选:D
【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,手机已经成为人们日常生活中不可缺少的产品,手机的功能也日趋完善,已延伸到了各个领域,如拍照,聊天,阅读,缴费,购物,理财,娱乐,办公等等,手机的价格差距也很大,为分析人们购买手机的消费情况,现对某小区随机抽取了200人进行手机价格的调查,统计如下:

年龄 价格

5000元及以上

3000元﹣4999元

1000元﹣2999元

1000元以下

45岁及以下

12

28

66

4

45岁以上

3

17

46

24

(Ⅰ)完成关于人们使用手机的价格和年龄的2×2列联表,再判断能否在犯错误的概率不超过0.025的前提下,认为人们使用手机的价格和年龄有关?
(Ⅱ)从样本中手机价格在5000元及以上的人群中选择3人调查其收入状况,设3人中年龄在45岁及以下的人数为随机变量X,求随机变量X的分布列及数学期望.
附K2=

P(K2≥k)

0.05

0.025

0.010

0.001

k

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ. (Ⅰ)求直角坐标下圆C的标准方程;
(Ⅱ)若点P(l,2),设圆C与直线l交于点A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(x+ )+sinx.
(I)利用“五点法”,列表并画出f(x)在[﹣ ]上的图象;
(II)a,b,c分别是△ABC中角A,B,C的对边.若a= ,f(A)= ,b=1,求△ABC的面积.

x

f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)= ,有下列5个结论:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)﹣ln(x﹣1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 , 则x1+x2=3.
则其中所有正确结论的序号是 . (请写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时, ,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin(ωx+φ)的图象向左平移 个单位.若所得图象与原图象重合,则ω的值不可能等于(
A.4
B.6
C.8
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为△ABC的外心,且 . ①若∠C=90°,则λ+μ=
②若∠ABC=60°,则λ+μ的最大值为

查看答案和解析>>

同步练习册答案