精英家教网 > 高中数学 > 题目详情

【题目】我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为(
A.3.119
B.3.126
C.3.132
D.3.151

【答案】B
【解析】解:x2+y2+z2<1发生的概率为 = ,当输出结果为521时,i=1001,m=521,x2+y2+z2<1发生的概率为P= ,∴ = ,即π=3.126, 故选B.
【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的第2项、第5项分别为二项式(2x+1)5展开式的第5项、第2项的系数.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn , 若存在实数λ,使 恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市岁的人群抽取一个容量为的样本,并将样本数据分成五组:,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的比例

第1组

第2组

第3组

第4组

第5组

(1)分别求出的值;

(2)从第组回答正确的人中用分层抽样方法抽取人,则第组每组应各抽取多少人?

(3)在(2)的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求:所抽取的人中第2组至少有人获得幸运奖概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(sinx+cosx).
(1)如果对于任意的x∈[0, ],f(x)≥kx+excosx恒成立,求实数k的取值范围;
(2)若x∈[﹣ ],过点M( ,0)作函数f(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 ,过点 的直线 为参数)与曲线 相交于点 , 两点.
(1)求曲线 的平面直角坐标系方程和直线 的普通方程;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过圆与直线的交点,且圆上任意一点关于直线 的对称点仍在圆上.

(1)求圆的标准方程;

(2)若圆轴正半轴的交点为,直线与圆交于两点(异于点),且点满足,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R,满足2≤y≤4﹣x,x≥1,则 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)求函数f(x)的单调区间;
(2)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明: <a<
(3)设h(x)=f(x+1)+g(x),当x≥0,h(x)≥1时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 均为等边三角形, .

(Ⅰ)求证: 平面
(Ⅱ)求直线 与平面 所成角的正弦值.

查看答案和解析>>

同步练习册答案