精英家教网 > 高中数学 > 题目详情

【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm)落在各个小组的频数分布如下表:

数据分组

[12.515.5

[15.518.5

[18.521.5

[21.524.5

[24.527.5

[27.530.5

[30.533.5

频数

3

8

9

12

10

5

3

1)根据频数分布表,求该产品尺寸落在[27.533.5]内的概率;

2)求这50件产品尺寸的样本平均数(同一组中的数据用该组区间的中点值作代表);

3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经计算得.利用该正态分布,求.

附:(1)若随机变量服从正态分布,则;(2.

【答案】10.16;(222.7;(30.1587

【解析】

1)直接根据频数分布表求尺寸落在[27.533.5)内的概率;

2)由每一组数据的中间值乘以频率作和求得样本平均数;

3)依题意,求得,再由正态分布曲线的对称性求Pz27.43)=0.1587

1)根据频数分布表可知,产品尺寸落在[27.5,33.5]内的概率为

2)样本平均数

3)依题意,而,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数对任意的都有,且的最大值为,下列四个结论:①的一个极值点;②若为奇函数,则的最小正周期;③若为偶函数,则上单调递增;④的取值范围是.其中一定正确的结论编号是(

A.①②B.①③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业批量生产了一种汽车配件,总数为,配件包装上标有从1的连续自然数序号,为对配件总数进行估计,质检员随机抽取了个配件,序号从小到大依次为,这个序号相当于从区间上随机抽取了个整数,这个整数将区间分为个小区间.由于这个整数是随机抽取的,所以前个区间的平均长度与所有个区间的平均长度近似相等,进而可以得到的估计值.已知,质检员随机抽取的配件序号从小到大依次为831352743104

1)用上面的方法求的估计值.

2)将(1)中的估计值作为这批汽车配件的总数,从中随机抽取100个配件测量其内径(单位:),绘制出频率分布直方图如下:

将这100个配件的内径落入各组的频率视为这个配件内径分布的概率,已知标准配件的内径为200,把这个配件中内径长度最接近标准配件内径长度的800个配件定义为优等品,求优等品配件内径的取值范围(结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示.

(1)利用散点图判断(其中均为大于的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由)

(2)对数据作出如下处理,令,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求关于的回归方程;

15

15

28.25

56.5

(3)已知企业年利润(单位:千万元)与的关系为(其中),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)若,求函数处的切线方程;

2)若函数在定义域上恰有两个不同的零点,求实数a的取值范围;

3)设函数在区间)上存在极值,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,求函数图象在处的切线方程;

2)求的单调区间;

3)若不等式恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是抛物线Cx24y的焦点,过E0,﹣1)的直线l与抛物线分別交于AB两点.

1)设直线AFBF的斜率分別为k1k2,证明:k1+k20

2)若的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形中,,现将长方形沿对角线折起,使,得到一个四面体,如图所示.

(1)试问:在折叠的过程中,异面直线能否垂直?若能垂直,求出相应的的值;若不垂直,请说明理由;

(2)当四面体体积最大时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案