精英家教网 > 高中数学 > 题目详情

如图1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E为CD上一点,且DE=4,过E作EF∥AD交BC于F现将△CEF沿EF折起到△PEF,使∠PED=60°,如图2.
(I)求证:PE⊥平面ADP;(II)求异面直线BD与PF所成角的余弦值;
(III)在线段PF上是否存在一点M,使DM与平在ADP所成的角为30°?若存在,确定点M的位置;若不存在,请说明理由.

解:(1)解法一:∵DE=4,PE=2,∠PED=60°,由弦定理得PD=2
∵PD2+PE2=16=DE2,∴PE⊥PD.∵EF⊥PE,EF⊥DE∴,EF⊥平面PDE,又∵EF∥AD,∴AD⊥平面PDE,∴AD⊥PE,又∵直线AD,PD在平面APD内,且相交于D,∴PE⊥平面APD.
解法二:EF⊥PE,EF⊥DE∴,EF⊥平面PDE∴平面DEF⊥平面PDE
以DA所在的直线为 x轴,以DE所在的直线为y轴,在平面DPE内过D作DE的垂线,以垂线所在直线为z轴,建立空间直角坐标系,如图
则D(0,0,0),A(3,0,0),P(0,3,),E(0,4,0)
=(3,0,0),=(0,3,),=(0,-1,).∵=0,=0,∴∴DA⊥EP,DP⊥EP,∵DA,DP是平面ADP内的相交直线,∴PE⊥平面APD.
(II)由(I)知AD⊥平面PDE,∴平面ADE⊥平面PDE
以DA所在的直线为 x轴,以DE所在的直线为y轴,在平面DPE内过D作DE的垂线,以垂线所在直线为z轴,建立空间直角坐标系,如图
则D(0,0,0),A(3,0,0),P(0,3,),E(0,4,0),F(,4,0),B(3,2,0),∴=(3,2,0),=(,1,-
=
设BD与PF所成的角为θ,则θ=,∴
(III)由(II)知=(0,-1,).=(,1,-
∵PE⊥平面ADP,∴平面ADP的法向量为==(0,-1,).
设M是线段PF上一点,则存在0≤λ≤1,
使═(0,3,)+λ(,1,-)=(,λ+3,
.==,如果直线DM与平面ADC所成的角为30°,
那么||=sin30°,即=解得
∵此方程在[0,1]内无解,
∴在在线段PF上不存在一点M,使DM与平在ADP所成的角为30°.
分析:(I)由题设条件及图形知,本题可采用两种方法求解,
法一,证明AD⊥PE,PE⊥PD,再利用线面垂直的判定定理证明即可;
法二,用向量法,建立如图的坐标系,根据题设条件写出各点的坐标,易得直线PE的方向向量与面内两直线AD,PD的方向向量,用数量积证明即可;
(II)本题用向量法比较方便,借助(I)中的坐标系,易得两异面直线的方向向量,用数量积求两异面直线的夹角的余弦值或其补角的余弦值;
(III)先假定存在,设出点M的坐标,由线面垂直的条件寻求满足题意的条件,根据DM与平在ADP所成的角为30°,建立方程求参数,为了解答本题,需要求出平面的法向量与直线DM的方向向量.然后利用相关规则求夹角的余弦,令其值等于sin30°,建立方程求参数,若能求出符合条件的参数,则说明存在,否则,说明不存在.
点评:本题考查用向量法证明线面垂直,求两异面直线所成的角,验证是否存在一点M使得DM与平在ADP所成的角为30°的问题,用向量法解决此类问题大大降低了解题难度,是解此类题的一个优先扶把思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.将△ABD沿对角线BD折起(图2),记折起后点A的位置为P且使平面PBD⊥平面BCD.
(1)求三棱锥P-BCD的体积;
(2)求平面PBC与平面PCD所成二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.
(Ⅰ)求证:平面EFH∥平面PBC;
(Ⅱ)求直线HE与平面PHB所成角的正弦值;
(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
12
AB=2
,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)求证:DA⊥BC;
(2)在CD上找一点F,使AD∥平面EFB;
(3)求点A到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E为CD上一点,且DE=4,过E作EF∥AD交BC于F现将△CEF沿EF折起到△PEF,使∠PED=60°,如图2.
(Ⅰ)求证:PE⊥平面ADP;
(Ⅱ)求异面直线BD与PF所成角的余弦值;
(Ⅲ)在线段PF上是否存在一点M,使DM与平在ADP所成的角为30°?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案